422
Views
23
CrossRef citations to date
0
Altmetric
Articles

Feasibility study of a flexible grinding method for precision machining of the TiAl-based alloy

, , &
Pages 1160-1168 | Received 05 Feb 2018, Accepted 08 May 2019, Published online: 12 Jun 2019

References

  • Beddoes, J. C.; Wallace, W.; Malherbe, M. C. The Technology of Titanium Aluminides for Aerospace Applications. Mater. Manuf. Processes. 1992, 7(4), 527–559. DOI: 10.1080/10426919208947440.
  • Bewlay, B. P.; Nag, S.; Suzuki, A.; Weimer, M. J. TiAl Alloys in Commercial Aircraft Engines. Mater. High Temp. 2016, 33(4–5), 549–559. DOI: 10.1080/09603409.2016.1183068.
  • Tang, M. K.; Huang, X. J.; Yu, J. G.; Li, X. W.; Zhang, Q. X. Simple Fabrication of Large-Area Corrosion Resistant Superhydrophobic Surface with High Mechanical Strength Property on TiAl-based Composite. J. Mater. Process. Technol. 2017, 239, 178–186. DOI: 10.1016/j.jmatprotec.2016.08.024.
  • Kothari, K.; Radhakrishnan, R.; Wereley, N. M.; Sudarshan, T. S. Rapid Consolidation of Gamma Titanium Aluminide Powders Attrition Milled to Submicron Scale. Mater. Manuf. Processes. 2013, 28(11), 1171–1178. DOI: 10.1080/10426914.2013.812216.
  • Aspinwall, D. K.; Dewes, R. C.; Mantle, A. L. The Machining of γ-TiAl Intermetallic Alloys. CIRP Annals - Manuf. Technol. 2005, 54(1), 99–104. DOI: 10.1016/S0007-8506(07)60059-6.
  • Rao, K. P.; Zhou, J. B. Titanium Silicide Reinforced in Situ Synthesized TiAl Composites and Their Mechanical Properties. Mater. Manuf. Processes. 2006, 21(5), 513–517. DOI: 10.1080/10426910500471615.
  • Du, H.; Liu, X. W.; Li, J.; Tao, P.; Jiang, J.; Sun, R.; Fan, Z. T. Use of Spark Plasma Sintering for Fabrication of Porous Titanium Aluminide Alloys from Elemental Powders. Mater. Manuf. Processes. 2016, 31(6), 725–732. DOI: 10.1080/10426914.2015.1048469.
  • Jiao, X. Y.; Wang, X. H.; Kang, X. Q.; Feng, P. Z.; Zhang, L. Q.; Akhtar, F. Effect of Heating Rate on Porous TiAl-based Intermetallics Synthesized by Thermal Explosion. Mater. Manuf. Processes. 2017, 32(5), 489–494. DOI: 10.1080/10426914.2016.1232826.
  • Nelson, L.; Xu, H. H. K.; Danyluk, S.; Jahanmir, S. Subsurface Damage in Grinding Titanium Aluminide. Mach. Sci. Technol. 1997, 1(2), 289–297. DOI: 10.1080/10940349708945653.
  • Bentley, S. A.; Mantle, A. L.; Aspinwall, D. K. The Effect of Machining on the Fatigue Strength of a Gamma Titanium Aluminide Intermetallic Alloy. Intermetallic. 1999, 7, 967–969. DOI: 10.1016/S0966-9795(99)00008-4.
  • Bentley, S. A.; Goh, N. P.; Aspinwall, D. K. Reciprocating Surface Grinding of a Gamma Titanium Aluminide Intermetallic Alloy. J. Mater. Process. Technol. 2001, 118, 22–28. DOI: 10.1016/S0924-0136(01)01033-0.
  • Stone, W.; Kurfess, T. R. Grinding Titanium Aluminide: Subsurface Damage. Int. J. Manuf. Technol. Manag. 2007, 12(1–3), 200–224. DOI: 10.1504/IJMTM.2007.014150.
  • Beranoagirre, A.; Lópezdelacalle, L. N. Grinding of Gamma TiAl Intermetallic Alloys. Presented at the 5th Manufacturing Engineering Society International Conference, Univ Zaragoza, Zaragoza, June 26, 2013. DOI: 10.1016/j.proeng.2013.08.182
  • Hood, R.; Cooper, P.; Aspinwall, D. K.; Soo, S. L.; Lee, D. S. Creep Feed Grinding of γ-TiAl Using Single Layer Electroplated Diamond Superabrasive Wheels. CIRP J. Manuf. Sci. Technol. 2015, 11, 36–44. DOI: 10.1016/j.cirpj.2015.07.001.
  • Zhao, K.; Liu, Y.; Yao, T.; Liu, B.; He, Y. Surface Nanocrystallization of Ti-45Al-7Nb-0.3W Intermetallics Induced by Surface Mechinical Grinding Treatment. Mater. Lett. 2016, 166, 59–62. DOI: 10.1016/j.matlet.2015.12.025.
  • Sharman, A. R. C.; Aspinwall, D. K.; Dewes, R. C.; Bowen, P. Workpiece Surface Integrity Considerations When Finish Turning Gamma Titanium Aluminide. Wear. 2001, 249, 473–481. DOI: 10.1016/S0043-1648(01)00575-0.
  • Kong, M. C.; Axinte, D.; Voice, W. Aspects of Material Removal Mechanism in Plain Waterjet Milling on Gamma Titanium Aluminide. J. Mater. Process. Technol. 2010, 210, 573–584. DOI: 10.1016/j.jmatprotec.2009.11.009.
  • Klocke, F.; Settineri, L.; Lung, D.; Priarone, P. C.; Arft, M. High Performance Cutting of Gamma Titanium Aluminides: Influence of Lubricoolant Strategy on Tool Wear and Surface Integrity. Wear. 2013, 302, 1136–1144. DOI: 10.1016/j.wear.2012.12.035.
  • Priarone, P. C.; Rizzuti, S.; Settineri, L.; Vergnano, G. Effects of Cutting Angle, Edge Preparation, and Nano-Structured Coating on Milling Performance of a Gamma Titanium Aluminide. J. Mater. Process. Technol. 2012, 212(12), 2619–2628. DOI: 10.1016/j.jmatprotec.2012.07.021.
  • Mathew, N. T.; Vijayaraghavan, L. High-Throughput Dry Drilling of Titanium Aluminide. Mater. Manuf. Processes. 2017, 32(2), 199–208. DOI: 10.1080/10426914.2016.1176179.
  • Clifton, D.; Mount, A. R.; Jardine, D. J.; Roth, R. Electrochemical Machining of Gamma Titanium Aluminide Intermetallics. J. Mater. Process. Technol. 2001, 108, 338–348. DOI: 10.1016/S0924-0136(00)00739-1.
  • Liu, J.; Zhu, D.; Zhao, L.; Xu, Z. Experimental Investigation on Electrochemical Machining of γ-TiAl Intermetallic. Presented at the 15th Machining Innovations Conference for Aerospace Industry, Garbsen, Germany, Nov 18, 2015. DOI: 10.1016/j.procir.2015.08.049
  • Sarkar, S.; Sekh, M.; Mitra, S.; Bhattacharyya, B. Modeling and Optimization of Wire Electrical Discharge Machining of γ-TiAl in Trim Cutting Operation. J. Mater. Process. Technol. 2008, 205(1–3), 376–387. DOI: 10.1016/j.jmatprotec.2007.11.194.
  • Gautier, G.; Priarone, P. C.; Rizzuti, S.; Settineri, L.; Tebaldo, V. A Contribution on the Modelling of Wire Electrical Discharge Machining of A γ-TiAl Alloy. Presented at the 15th CIRP Conference on Modelling of Machining Operations, Karlsruhe, Germany, June 11, 2015. DOI: 10.1016/j.procir.2015.03.019
  • Xiao, G. J.; Huang, Y. Constant-Load Adaptive Belt Polishing of the Weak-Rigidity Blisk Blade. Int. J. Adv. Manuf. Technol. 2015, 78(9–12), 1473–1484. DOI: 10.1007/s00170-014-6724-4.
  • Xiao, G. J.; Huang, Y. Equivalent Self-Adaptive Belt Grinding for the real-R Edge of an Aero-Engine Precision-Forged Blade. Int. J. Adv. Manuf. Technol. 2016, 83(9), 1697–1706. DOI: 10.1007/s00170-015-7680-3.
  • Zou, L.; Huang, Y.; Zhou, M.; Xiao, G. J. Thermochemical Wear of Single Crystal Diamond Catalyzed by Ferrous Materials at Elevated Temperature. Crystals. 2017, 7(4), 1–10. DOI: 10.3390/cryst7040116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.