442
Views
14
CrossRef citations to date
0
Altmetric
Review

Tri-objective optimization of noisy dataset in blast furnace iron-making process using evolutionary algorithms

&
Pages 677-686 | Received 27 Mar 2019, Accepted 19 Jun 2019, Published online: 18 Jul 2019

References

  • Omori, M.; Ed. Blast Furnace Phenomena and Modelling; Elsevier: London, 1987.
  • Dong, X. F.; Pinson, D.; Zhang, S. J.; Yu, A. B.; Zulli, P. Gas-powder Flow in Blast Furnace with Different Shapes of Cohesive Zone. Appl. Math. Model. 2006, 30(11), 1293–1309. DOI: 10.1016/j.apm.2006.03.004.
  • Hatano, M.; Kurita, K. A Mathematical Model of Blast Furnace with Radial Distribution of Gas Flow, Heat Transfer and Reactions Considered. T. Iron Steel I. JPN. 1982, 22(6), 448–456. DOI: 10.2355/isijinternational1966.22.448.
  • Zhou, Z.; Zhu, H.; Yu, A.; Wright, B.; Pinson, D.; Zulli, P. Discrete Particle Simulation of Solid Flow in a Model Blast Furnace. ISIJ Int. 2005, 45, 1828–1837. DOI: 10.2355/isijinternational.45.1828.
  • Decastro, J. A.; Nogami, H.; Yagi, J. Three Dimensional Multiphase Mathematical Modelling of the Based on Multi-Fluid Model. ISIJ Int. 2002, 42, 44–52. DOI: 10.2355/isijinternational.42.44.
  • Shen, Y. S.; Guo, B. Y.; Yu, A. B.; Zulli, P. A Three-dimensional Numerical Study of the Combustion of Coal Blends in Blast Furnace. Fuel. 2009. DOI: 10.1016/j.fuel.2008.08.013.
  • Mondal, D. N.; Sarangi, K.; Petterson, F.; Sen, P. K.; Saxén, H.; Chakraborti, N. Cu-Zn Separation by Supported Liquid Membrane Analyzed through Multi Objective Genetic Algorithms. Hydrometallurgy. 2011, 107, 112–123. DOI: 10.1016/j.hydromet.2011.02.008.
  • Pettersson, F.; Chakraborti, N.; Saxén, H. A Genetic Algorithm Based Multi Objective Neural Net Applied to Noisy Blast Furnace Data. Appl. Soft. Comput. 2007, 70, 387–397. DOI: 10.1016/j.asoc.2005.09.001.
  • Giri, B. K.; Pettersson, F.; Saxén, H.; Chakraborti, N. Genetic Programming Evolved through Bi Objective Algorithms Applied to a Blast Furnace. Mater. Manuf. Process. 2013, 28, 776–882. DOI: 10.1080/10426914.2013.763953.
  • Mitra, T.; Pettersson, F.; Saxén, H.; Chakraborti, N. Blast Furnace Charging Optimization Using Multi Objective Evolutionary and Genetics Algorithms. Mater. Manuf. Process. 2016, 32, 1179–1188. DOI: 10.1080/10426914.2016.1257133.
  • Mitra, T.; Saxén, H. Evolution of Charging Programs for Achieving Required Gas Temperature Profile in Blast Furnace. Mater. Manuf. Process. 2014, 30, 474–487. DOI: 10.1080/10426914.2014.973602.
  • Saxén, H.; Pettersson, F.; Gunturu, K. Evolving Nonlinear Time Series Models of the Hot Metal Silicon Content in the Blast Furnace. Mater. Manuf. Process. 2007, 22, 577–584. DOI: 10.1080/10426910701322278.
  • Chen, J.;. A Predictive System for Blast Furnace by Integrating A Neural Network with Qualitative Analysis. Eng. Appl. Artif. Intel. 2001, 19, 77–85. DOI: 10.1016/S0952-1976(00)00062-2.
  • Hykin, S.Neural Networks and Learning Machines. Pearson Prentice-Hall: New York, 2008.
  • Hassoun, M. H.;. Fundamentals of Artificial Neural Networks; MIT Press: Cambridge, MA, 1995.
  • Coello-Coello, C. A.; Van Veldhuizen, D. A.; Lamont, G. B. Evolutionary Algorithm for Solving Multi Objective Problems; Kluwer Academic Publishers: New York, 2002.
  • Pettersson, F.; Biswas, A.; Sen, P.; Saxén, H.; Chakraborti, N. Analyzing Leaching Data for Low Grade Manganese Ore Using Neural Nets and Multi Objective Genetic Algorithms. Mater. Manuf. Process. 2009, 24, 320–330. DOI: 10.1080/10426910802679386.
  • Chakraborti, N.;. Strategies for Evolutionary Data Driven Modeling in Chemical and Metallurgical Systems. In Applications of Metaheuristics in Process Engineering; Valadi, J, Siarry, P, Eds.; Springer: Cham, 2014; pp 89–122.
  • Chakraborti, N.;. Critical Assessment 3: The Unique Contributions of Multi-objective Evolutionary and Genetic Algorithms in Materials Research. Mater. Sci. Technol. 2014, 30(11), 1259–1262. DOI: 10.1179/1743284714Y.0000000578.
  • Chakraborti, N.;. Data-driven Bi-objective Genetic Algorithms EvoNN and BioGP and Their Applications in Metallurgical and Materials Domain. In Computational Approaches to Materials Design: Theoretical and Practical Aspects; Datta, S, Davim, J.P., Eds.; IGI Global, 2016; pp 346–368.
  • Chugh, T.; Chakraborti, N.; Sindhya, K.; Jin, Y. A Data Driven Surrogate Assisted Multi Objective Evolutionary Algorithm Applied to A Many Objective Blast Furnace Optimization Problems. Mater. Manuf. Process. 2017, 32(10), 1172–1178. DOI: 10.1080/10426914.2016.1269923.
  • Mane, S.; Rao, M. R. N. Many Objective Optimization Problems and Evolutionary Algorithms a Short Review. IJAER. 2017, 12, 9774–9793.
  • Chugh, T.; Jin, Y.; Miettinen, K.; Hakanen, J.; Sindhya, K. A Surrogate Assisted Reference Vector Guided Evolutionary Algorithm for Computing Expensive Many Objective Optimizations. IEEE Trans. Evol. Comput. 2018, 22(1), 129–142. DOI: 10.1109/TEVC.2016.2622301.
  • Cheng, R.; Jin, Y. A Reference Vector Guided Evolutionary Algorithm for Many Objective Optimizations. IEEE. 2016, 20, 773–790.
  • Mahanta, B. K.; Chakraborti, N. Evolutionary Data Driven Modeling and Multi Objective Optimization of Noisy Data Set in Blast Furnace Iron Making Process. Steel Res. Int. 2018, 89, 1–11. DOI: 10.1002/srin.201800121.
  • Jha, R.; Sen, P. K.; Chakraborti, N. Multi Objective Genetic Algorithm and Genetic Programming Models for Minimizing Input Carbon Rates in a Blast Furnace Compared with a Conventional Analytic Approach. Steel Res. Int. 2014, 85(2), 219–232. DOI: 10.1002/srin.201300074.
  • Chakraborti, N.;. Evolutionary Data-driven Modeling. In Informatics for Materials Science and Engineering; Rajan, K., Ed.; Butterworth-Heinemann, 2013; pp 71–95.
  • KimemeTM. www.kimeme.com, 2014 (accessed July 16, 2019).
  • Iacca, G.; Mininno, E. Introducing Kimeme, a Novel Platform for Multi-disciplinary Multi-objective Optimization. Communications in Computer and Information Science; Springer International Publishing: Cham; 2016; pp 40–52.
  • Li, M.; Zhen, L.; Yao, X. How to Read Many-objective Solution Sets in Parallel Coordinates [educational Forum]. IEEE Comput. Intell. M. 2017, 12(4), 88–100. DOI: 10.1109/MCI.2017.2742869.
  • Jha, R.; Chakraborti, N.; David, R. D.; Aron, P. S.; Christian, V. C. Combined Machine Learning and CALPHAD Approach for Discovering Processing Structure Relationships in Soft Magnetic Alloys. Comput. Mater. Sci. 2018, 150, 201–211. DOI: 10.1016/j.commatsci.2018.04.008.
  • Dawson-Elli, N.; Kolluri, S.; Mitra, K.; Subramanian, V. R. On the Creation of a Chess-AI-Inspired Problem-Specific Optimizer for the Pseudo Two-Dimensional Battery Model Using Neural Networks. J. Electrochem. Soc. 2019, 166(6), 886–896. DOI: 10.1149/2.1261904jes.
  • Dawson-Elli, N.; Lee, S. B.; Pathak, M.; Mitra, K.; Subramanian, V. R. Data Science Approaches for Electrochemical Engineers: An Introduction through Surrogate Model Development for Lithium-ion Batteries. J. Electrochem. Soc. 2018, 165(2), 1–15. DOI: 10.1149/2.1391714jes.
  • Miriyala, S. S.; Subramanian, V. R.; Mitra, K. TRANSFORM-ANN for Online Optimization of Complex Industrial Processes: Casting Process as Case Study. EJOR. 2018, 264(1), 294–309. DOI: 10.1016/j.ejor.2017.05.026.
  • Pantula, P. D.; Miriyala, S. S.; Mitra, K. KERNEL: Enabler to Build Smart Surrogates for Online Optimization and Knowledge Discovery. Mater. Manuf. Process. 2017, 32(10), 1162–1171. DOI: 10.1080/10426914.2016.1269918.
  • Liu, X.; Chen, L.; Qin, X.; Sun, F. Exergy Loss Minimization for a Blast Furnace with Comparative Analyses for Energy Flows and Exergy Flows. Energy. 2015, 93, 10–19. DOI: 10.1016/j.energy.2015.09.008.
  • Liu, X.; Qin, X.; Chen, L.; Sun, F. CO2 Emission Optimization for a Blast Furnace considering Plastic Injection. IJEE. 2015, 6(2), 175.
  • Liu, X.; Chen, L.; Feng, H.; Qin, X.; Sun, F. Constructal Design of a Blast Furnace Iron-making Process Based on Multi-objective Optimization. Energy. 2016, 109, 137–151. DOI: 10.1016/j.energy.2016.04.101.
  • Chen, L.; Feng, H.; Xie, Z. Generalized Thermodynamic Optimization for Iron and Steel Production Processes: Theoretical Exploration and Application Cases. Entropy. 2016, 18(10), 353.
  • Feng, H.; Chen, L.; Liu, X.; Xie, Z. Constructal Design for an Iron and Steel Production Process Based on the Objectives of Steel Yield and Useful Energy. Int. J. Heat Mass Trans. 2017, 111, 1192–1205. DOI: 10.1016/j.ijheatmasstransfer.2017.04.096.
  • Shen, X.; Chen, L.; Xia, S.; Qin, X.; Xie, Z. Iron Ores Matching Analysis and Optimization for Iron-making System by Taking Energy Consumption, CO 2 Emission or Cost Minimization as the Objective. Sci Technol China. 2017, 60(11), 1625–1637. DOI: 10.1007/s11431-017-9072-9.
  • Shen, X.; Chen, L.; Xia, S.; Xie, Z.; Qin, X. Burdening Proportion and New Energy-saving Technologies Analysis and Optimization for Iron and Steel Production System. J. Clean Prod. 2018, 172, 2153–2166. DOI: 10.1016/j.jclepro.2017.11.204.
  • Agrawal, A.; Tiwari, U.; Pettersson, F.; Das, S.; Saxén, H.; Chakraborti, N. Analyzing Blast Furnace Data Using Evolutionary Neural Network and Multi Objective Genetic Algorithm. Ironmak Steelmak. 2010, 37, 353–359. DOI: 10.1179/030192310X12683075004672.
  • Bandyopadhyay, S.; Saha, S.; Maulik, U.; Deb, K. A Simulated Annealing-based Multiobjective Optimization Algorithm: AMOSA. IEEE Trans. Evol. Comput. 2008, 12(3), 269–283. DOI: 10.1109/TEVC.2007.900837.
  • Li, H.; Zhang, Q. Multiobjective Optimization Problems with Complicated Pareto Sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 2009, 13(2), 284–302. DOI: 10.1109/TEVC.2008.925798.
  • Coello, C. C.; Lechuga, M. S. MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization. Proceedings of the 2002 Congress on Evol. Comput. CEC’02 Cat. No. 02TH8600, IEEE, Honolulu, HI, 2002, 2, 1051–1056.
  • Mezura-Montes, E.; Reyes-Sierra, M.; Coello, C. A. C. Multi-objective Optimization Using Differential Evolution: A Survey of the State-of-the-art. In Advances in Differential Evolution; Chakraborty, U. K., Ed.; Springer: Berlin, Heidelberg, 2008; pp 173–196.
  • Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. TIK-report. 2001, 103,1–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.