389
Views
23
CrossRef citations to date
0
Altmetric
Articles

Experimental investigation on boring of HSLA ASTM A36 steel under dry, wet, and cryogenic environments

, , &
Pages 1352-1379 | Received 03 Jun 2019, Accepted 03 Jul 2019, Published online: 01 Aug 2019

References

  • Kumar, S.; Dvivedi, A. On Machining of Hard and Brittle Materials Using Rotary Tool Micro-ultrasonic Drilling Process. Mater. Manuf. Processes. 2019, 34(7), 736–748. DOI: 10.1080/10426914.2019.1594255.
  • Shakeel Ahmed, L.; Pradeep Kumar, M. Investigation of Cryogenic Cooling Effect in Reaming Ti-6Al-4V Alloy. Mater. Manuf. Processes. 2017, 32(9), 970–978. DOI: 10.1080/10426914.2016.1221088.
  • Korkut, I.; Kucuk, Y. Experimental Analysis of the Deviation from Circularity of Bored Hole Based on the Taguchi Method. Stroj. Vestn. J. Mech. E. 2010, 56(5), 340–346.
  • Kumar, S.; Harshit Dave, K.; Keyur Desai, P. Experimental Investigation on Performance on Performance of Different Tool Movement Strategies in EDM Process for Boring Operation. Int. J. Adv. Manuf. Tech. 2016, 87(5–8), 1609–1620. DOI: 10.1007/s00170-016-8443-5.
  • Manimaran, G.; Pradeep Kumar, M. Effect of Cryogenic Cooling and Sol-gel Alumina Wheel on Grinding Performance of AISI 316 Stainless Steel. Arch. Civ. Mech. Eng. 2013, 13(3), 304–312. DOI: 10.1016/j.acme.2013.03.002.
  • Shokrani, A.; Dhokia, V.; Munoz Escalona, P.; Newman, S. T. State of the Art Cryogenic Machining and Processing. Int. J. Comput. Integ. M. 2013, 26(7), 616–648. DOI: 10.1080/0951192X.2012.749531.
  • Ulutan, D.; Özel, T. Multiobjective Optimization of Experimental and Simulated Residual Stresses in Turning of Nickel-Alloy IN100. Mater. Manuf. Processes. 2013, 28(7), 835–841. DOI: 10.1080/10426914.2012.718474.
  • Avila, R. F.; Abrao, A. M. The Effect of Cutting Fluids on the Machining of Hardened AISI 4340 Steel. J. Mater. Process. Tech. 2001, 119(1–3), 21–26. DOI: 10.1016/S0924-0136(01)00891-3.
  • Milton Shaw, C.;. Metal Cutting Principles, 2nd ed.; Oxford University Press: New York, 2005.
  • Ravi, S.; Pradeep Kumar, M. Experimental Investigation of Cryogenic Cooling in Milling of AISI D3 Tool Steel. Mater. Manuf. Processes. 2012, 27(10), 1017–1021. DOI: 10.1080/10426914.2011.654157.
  • Natasha, A. R.; Ghani, J. A.; Haron, C. H. C.; Syarif, J. The Effect of Cryogenic Application on Surface Integrity in Manufacturing Process: A Review. J. Appl. Sci. Res. 2012, 8(9), 4880–4890.
  • Dhananchezian, M.; Pradeep Kumar, M.; Sornakumar, T. Cryogenic Turning of AISI 304 Stainless Steel with Modified Tungsten Carbide Tool Inserts. Mater. Manuf. Processes. 2011, 26(5), 781–785. DOI: 10.1080/10426911003720821.
  • Shakeel Ahmed, L.; Pradeep Kumar, M. Cryogenic Drilling of Ti-6Al-4V Alloy under Liquid Nitrogen Cooling. Mater. Manuf. Processes. 2015, 31(7), 951–959. DOI: 10.1080/10426914.2015.1048475.
  • Cajner, F.; Leskovsek, V.; Landek, D.; Cajner, H. Effect of Deep-Cryogenic Treatment on High Speed Steel Properties. Mater. Manuf. Processes. 2009, 24(7–8), 743–746. DOI: 10.1080/10426910902809743.
  • Lin, C. L.;. Use of Taguchi Method and Grey Relational Analysis to Optimize Turning Operations with Multiple Performance Characteristics. Mater. Manuf. Processes. 2004, 19(2), 209–220. DOI: 10.1081/AMP-120029852.
  • Ross, P. J.;. Taguchi Techniques for Quality Engineering; McGraw Hill: New York, 1996.
  • Lin, Y.-C.; Cheng, C.-H.; Su, B.-L.; Hwang, L.-R. Machining Characteristics and Optimization of Machining Parameters of SKH 57 High-speed Steel Using Electrical-discharge Machining Based on Taguchi Method. Mater. Manuf. Processes. 2007, 21(8), 922–929. DOI: 10.1080/03602550600728133.
  • Dang, J.; Liu, G.; Chen, Y.; An, Q.; Ming, W.; Chen, M. Experimental Investigation on Machinability of DMLS Ti6Al4V under Dry Drilling Process. Mater. Manuf. Processes. 2019, 34(7), 749–758. DOI: 10.1080/10426914.2019.1594254.
  • Ahmed, N.; Ishfaq, K.; Rafaqat, M.; Pervaiz, S.; Anwar, S.; Salah, B. EDM of Ti-6Al-4V: Electrode and Polarity Selection for Minimum Tool Wear Rate and Overcut. Mater. Manuf. Processes. 2019, 34(7), 769–778. DOI: 10.1080/10426914.2019.1594278.
  • Yilmaz, E.; Kaya, G. G.; Deveci, H. Removal of Methylene Blue Dye from Aqueous Solution by Semi‐interpenetrating Polymer Network Hybrid Hydrogel: Optimization through Taguchi Method. J. Polym. Sci. Pol. Chem. 2019, 57(10), 1070–1078. DOI: 10.1002/pola.29361.
  • Perumal, A.; Azhagurajan, A.; Baskaram, S.; Prithivirajan, R.; Narayansamy, P. Statistical Evaluation and Performance Analysis of Electrical Discharge Machining (EDM) Characteristics of Hard Ti-6Al-2Sn-4Zr-2Mo Alloy. Mat. Res. Express. 2019, 6(5), 1–27. DOI: 10.1088/2053-1591/ab06da.
  • Yuvaraj, N.; Pradeep Kumar, M. Mutliresponse Optimization of Abrasive Water Jet Cutting Process Parameters Using TOPSIS Approach. Mater. Manuf. Processes. 2015, 30(7), 882–889. DOI: 10.1080/10426914.2014.994763.
  • Manimaran, G.; Pradeep Kumar, M. Multiresponse Optimization of Grinding AISI 316 Stainless Steel Using Grey Relational Analysis. Mater. Manuf. Processes. 2013, 28(4), 418–423. DOI: 10.1080/10426914.2012.709347.
  • Nakhjavani, O. B.; Ghoreishi, M. Multi Criteria Optimization of Laser Percussion Drilling Process Using Artificial Neural Network Model Combined with Genetic Algorithm. Mater. Manuf. Processes. 2006, 21(1), 11–18. DOI: 10.1081/AMP-200060402.
  • Mitra, T.; Pettersson, F.; Saxen, H.; Chakraborti, N. Blast Furnace Charging Optimization Using Multi-objective Evolutionary and Genetic Algorithms. Mater. Manuf. Processes. 2017, 32(10), 1179–1188. DOI: 10.1080/10426914.2016.1257133.
  • Dang, X.-P.;. Constrained Multi-objective Optimization of EDM Process Parameters Using Kriging Model and Particle Swarm Algorithm. Mater. Manuf. Processes. 2017, 33(4), 397–404. DOI: 10.1080/10426914.2017.1292037.
  • Miettinen, K.;. Using Interactive Multiobjective Optimization in Continuous Casting of Steel. Mater. Manuf. Processes. 2007, 22(5), 585–593. DOI: 10.1080/10426910701322468.
  • Arunramnath, R.; Thyla, P. R.; Mahendrakumar, N.; Ramesh, M.; Siddeshwaran, A. Multi-attribute Optimization of End Milling Epoxy Granite Composites Using TOPSIS. Mater. Manuf. Processes. 2019, 34(5), 530–543. DOI: 10.1080/10426914.2019.1566960.
  • Sameer, M. D.; Birru, A. K. Optimization and Characterization of Dissimilar Friction Stir Welded DP600 Dual Phase Steel and AA6082-T6 Aluminium Alloy Sheets Using TOPSIS and Grey Relational Analysis. Mater. Res. Express. 2019, 6(5), 1–43. DOI: 10.1088/2053-1591/aafba4.
  • Wang, L.; Wang, H.; Xu, Z.; Ren, Z. The Interval‐valued Hesitant Pythagorean Fuzzy Set and Its Applications with Extended TOPSIS and Choquet Integral‐based Method. Int. J. Intell. Syst. 2019, 34(6), 1063–1085. DOI: 10.1002/int.22086.
  • Jayabalakrishnan, D.; Balasubramanian, M. Friction Stir Weave Welding (FSWW) of AA6061 Aluminium Alloy with a Novel Tool-path Pattern. Aust. J. Mech. Eng. 2019, 17(2), 133–144. DOI: 10.1080/14484846.2017.1373584.
  • Karthik, S.; Soorya Prakash, K.; Gopal, P. M.; Joshi, S. Influence of Materials and Machining Parameters on WEDM of Al/AlCoCrFeNiMo0.5 MMC. Mater. Manuf. Processes. 2019, 34(7), 759–768. DOI: 10.1080/10426914.2019.1594250.
  • Abeens, M.; Muruganandhan, R.; Thirumavalavan, K.; Kalainathan, S. Surface Modification of AA7075 T651 by Laser Shock Peening to Improve the Wear Characteristics. Mater. Res. Express. 2019, 6(6), 1–27. DOI: 10.1088/2053-1591/ab0b0e.
  • Saini, S.; Ahuja, I. S.; Vishal Sharma, S. Residual Stresses, Surface Roughness and Tool Wear in Hard Turning: A Comprehensive Review. Mater. Manuf. Processes. 2012, 27(6), 583–598. DOI: 10.1080/10426914.2011.585505.
  • Chandrasekhara Sastry, C.; Hariharan, P.; Pradeep Kumar, M. Experimental Investigation of Dry, Wet and Cryogenic Boring of AA 7075 Alloy. Mater. Manuf. Processes. 2019, 34(7), 814–831. DOI: 10.1080/10426914.2019.1605174.
  • Hua, J.; Shivpuri, R.; Chenga, X.; Bedekara, V.; Matsumoto, Y.; Hashmito, F.; Watkin, T. R. Effect of Feed Rate, Workpiece Hardness and Cutting Edge on Subsurface and Residual Stress in the Hard Turning of Bearing Steel Using Chamfer and Hone Cutting Edge Geometry. Mat. Sci. Eng. A. 2005, 394(1–2), 238–248. DOI: 10.1016/j.msea.2004.11.011.
  • Alabdullah, M.; Polishetty, A.; Nomani, J.; Littlefair, G. An Investigation on Machinability Assessment of Al-6XN and AISI 316 Alloys: An Assessment Study of Machining. Mach. Sci. Technol. 2019, 23(2), 171–217. DOI: 10.1080/10910344.2018.1486415.
  • Rae, W.;. Thermo-metallo-mechanical Modelling of Heat Treatment Induced Residual Stress in Ti-6Al-4V Alloy. Mater. Sci. Tech. Lond. 2019, 35(7), 747–766. DOI: 10.1080/02670836.2019.1591031.
  • Guochao, L.; Xu, H.; Zhou, H.; Jing, X.; Sun, Y. Experimental Study of Residual Stresses of Cam Produced by Heat Treatment and Grinding Processes. Int. J. Adv. Manuf. Tech. 2019, 100(5–8), 1355–1362. DOI: 10.1007/s00170-018-2756-5.
  • Wang, X.; Chen, Y. L.; Niu, G. The Study on Corrosion Resistance of High-strength Spring Steel. Corros. Eng. Sci. Techn. 2018, 53(1), 54–64. DOI: 10.1080/1478422X.2017.1384628.
  • Pan, C.; Guo, M.; Han, W.; Wang, Z.; Wang, C. Study of Corrosion Evolution of Carbon Steel Exposed to an Industrial Atmosphere. Corros. Eng. Sci. Techn. 2019, 54(3), 241–248. DOI: 10.1080/1478422X.2019.1574955.
  • Chang, R.; Li, J.; Gu, J. Effect of Nitrogen on Microstructure and Corrosion Resistance of Cr15 Super Martensitic Stainless Steel. Corros. Eng. Sci. Techn. 2019, 54(3), 225–232. DOI: 10.1080/1478422X.2019.1567028.
  • Boven, G. V.; Chen, W.; Rogge, R. The Role of Residual Stress in Neutral pH Stress Corrosion Cracking of Pipeline Steels, Part I: Pitting and Cracking Occurrence. Acta. Mater. 2006, 55(1), 29–42. DOI: 10.1016/j.actamat.2006.08.037.
  • Guo, X.; Situm, A.; Burke Barlow, C.; Guo, B.; Ian Burgess, J.; Andrew Grosvenor, P. Soft X‐ray Spectromicroscopy Studies of Pitting Corrosion of Reinforcing Steel Bar. Surf. Inteface. Anal. 2019, 51(6), 681–691. DOI: 10.1002/sia.6640.
  • Liu, T.; Bai, Q.; Ru, X.; Xia, S.; Zhong, X.; Lu, Y.; Shoji, T. Grain Boundary Engineering for Improving Stress Corrosion Cracking of 304 Stainless Steel. Mater. Sci. Tech. Lond. 2019, 35(4), 477–487. DOI: 10.1080/02670836.2019.1570661.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.