315
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Many-objective optimization of hot-rolling process of steel: A hybrid approach

, , &
Pages 668-676 | Received 30 Apr 2019, Accepted 26 Jul 2019, Published online: 06 Sep 2019

References

  • Baker, T. N. Microalloyed Steels. Ironmak. Steelmak. 2016, 43(4), 264–307. DOI: 10.1179/1743281215y.0000000063.
  • Halder, C.; Madej, L.; Pietrzyk, M.; Chakraborti, N. Optimization of Cellular Automata Model for the Heating of Dual-Phase Steel by Genetic Algorithm and Genetic Programming. Mater. Manuf. Process. 2014, 30(4), 552–562. DOI: 10.1080/10426914.2014.994765.
  • Mukherjee, K.; Hazra, S.; Petkov, P.; Militzer, M. Critical Comparison of Novel and Conventional Processing for Dual-Phase Steels. Mater. Manuf. Process. 2007, 22(4), 511–515. DOI: 10.1080/10426910701236049.
  • Yi, H. L.; Lee, K. Y.; Bhadeshia, H. K. D. H. Stabilisation of Ferrite in Hot Rolled δ-TRIP Steel. Mater. Sci. Technol. 2011, 27(2), 525–529. DOI: 10.1179/026708309x12506934374001.
  • Mukherjee, M.; Bhattacharyya, T.; Singh, S. B. Models for Austenite to Martensite Transformation in TRIP-Aided Steels: A Comparative Study. Mater. Manuf. Process. 2010, 25(1–3), 206–210. DOI: 10.1080/10426910903202369.
  • Ding, R.; Tang, D.; Zhao, A.; Dong, R.; Cheng, J.; Zhang, X. A New Type of Quenching and Partitioning Processing Developed from Martensitic Pre-microstructure. Mater. Manuf. Process. 2014, 29(6), 704–709. DOI: 10.1080/10426914.2014.912304.
  • Tanaka, T. Controlled Rolling of Steel Plate and Strip. Int. Met. Rev. 1981, 26(1), 185–212. DOI: 10.1179/imtr.1981.26.1.185.
  • Rath, S.; Singh, A. P.; Bhaskar, U.; Krishna, B.; Santra, B. K.; Rai, D.; Neogi, N. Artificial Neural Network Modeling for Prediction of Roll Force during Plate Rolling Process. Mater. Manuf. Process. 2010, 25(1–3), 149–153. DOI: 10.1080/10426910903158249.
  • Bhadeshia, H. K. D. H. Neural Networks in Materials Science. ISIJ Int. 1999, 39(10), 966–979. DOI: 10.2355/isijinternational.39.966.
  • Mohanty, I.; Bhattacherjee, D. Artificial Neural Network and Its Application in Steel Industry. In S. Datta, & J. Davim (Eds.), In Computational Approaches to Materials Design: Theoretical and Practical Aspects; IGI Global: Hershey, PA, 2016; pp 267–300.
  • Mohanty*, I.; Datta, S.; Bhattacharjee, D. Composition–Processing–Property Correlation of Cold-Rolled IF Steel Sheets Using Neural Network. Mater. Manuf. Process. 2008, 24(1), 100–105. DOI: 10.1080/10426910802543947.
  • Mukhopadhyay, A.; Iqbal, A. Prediction of Mechanical Properties of Hot Rolled, Low-Carbon Steel Strips Using Artificial Neural Network. Mater. Manuf. Process. 2005, 20(5), 793–812. DOI: 10.1081/amp-200055140.
  • Masoudi, S.; Mirabdolahi, M.; Dayyani, M.; Jafarian, F.; Vafadar, A.; Dorali, M. R. Development of an Intelligent Model to Optimize Heat-affected Zone, Kerf, and Roughness in 309 Stainless Steel Plasma Cutting by Using Experimental Results. Mater. Manuf. Process. 2018, 34(3), 345–356. DOI: 10.1080/10426914.2018.1532579.
  • Mohanty, I.; Sarkar, S.; Jha, B.; Das, S.; Kumar, R. Online Mechanical Property Prediction System for Hot Rolled IF Steel. Ironmak. Steelmak. 2014, 41(8), 618–627. DOI: 10.1179/1743281214y.0000000178.
  • Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons: Chichester, 2008.
  • Chen, L.; Liu, H.-L.; Tan, K. C. Decomposition Based Dominance Relationship for Evolutionary Many-objective Algorithm. 2017 IEEE Symp. Ser. Computat. Intell. (SSCI). 2017, 1–6. DOI: 10.1109/ssci.2017.8280867.
  • Messac, A.; Mattson, C. A. Normal Constraint Method with Guarantee of Even Representation of Complete Pareto Frontier. Aiaa J. 2004, 42(10), 2101–2111. DOI: 10.2514/1.8977.
  • Mohammadi, A.; Omidvar, M. N.; Li, X. A New Performance Metric for User-Preference Based Multi-Objective Evolutionary Algorithms. 2013 IEEE Congr. Evol. Comput. 2013, 2825–2832. DOI: 10.1109/cec.2013.6557912.
  • Ansary, M. A. T.; Panda, G. A Sequential Quadratically Constrained Quadratic Programming Technique for A Multi-objective Optimization Problem. Eng. Optim. 2018, 51(1), 22–41. DOI: 10.1080/0305215x.2018.1437154.
  • Hwang, W.-L.; Lee, -C.-C.; Peng, G.-J. Multi-Objective Optimization and Characterization of Pareto Points for Scalable Coding. IEEE Trans. Circuits Syst. Video Technol. 2018, 1. DOI: 10.1109/tcsvt.2018.2851999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.