473
Views
22
CrossRef citations to date
0
Altmetric
Articles

Study on ultra-precision processing of Ti-6Al-4V with different ultrasonic vibration-assisted cutting modes

ORCID Icon, , , , , & show all
Pages 1380-1388 | Received 15 May 2019, Accepted 13 Aug 2019, Published online: 28 Aug 2019

References

  • Mukhopadhyay, M.; Kundu, P. K.; Chatterjee, S.; Das, S. Impact of Dressing Infeed on SiC Wheel for Grinding Ti-6Al-4V. Mater. Manuf. Processes. 2019, 34(1), 54–60. DOI: 10.1080/10426914.2018.1532588.
  • Revuru, R. S.; Posinasetti, N. R.; Vsn, V. R.; Amrita, M. Application of Cutting Fluids in Machining of Titanium Alloys—a Review. Int. J. Adv. Manuf. Technol. 2017, 91(5–8), 2477–2498. DOI: 10.1007/s00170-016-9883-7.
  • Yip, W. S.; To, S. Ductile and Brittle Transition Behavior of Titanium Alloys in Ultra-precision Machining. Sci. Rep. 2018, 8, 3934. DOI: 10.1038/s41598-018-22329-2.
  • Jerold, B. D.; Kumar, M. P. The Influence of Cryogenic Coolants in Machining of Ti–6Al–4V. J. Manuf. Sci. Eng. 2013, 135(3), 031005. DOI: 10.1115/1.4024058.
  • Paul, S.; Singh, A. K.; Ghosh, A. Grinding of Ti-6Al-4V under Small Quantity Cooling Lubrication Environment Using Alumina and MWCNT Nanofluids. Mater. Manuf. Processes. 2016, 32(6), 608–615. DOI: 10.1080/10426914.2016.1257797.
  • Masood, I.; Jahanzaib, M.; Haider, A. Tool Wear and Cost Evaluation of Face Milling Grade 5 Titanium Alloy for Sustainable Machining. Adv. Prod. Eng. Manag. 2016, 11(3), 239–250. DOI: 10.14743/apem2016.3.224.
  • Wada, T.; Okayama, K. Tool Wear of Poly Crystalline Diamond in Cutting Ti-6Al-4V Alloy with High-pressure Coolant Supplied. In 8th International Conference on Mechanical and Aerospace Engineering (ICMAE), Prague, Czech Republic. 50–55, 2017. DOI: 10.1109/ICMAE.2017.8038616.
  • Charitha, M. R.; Shrikantha, S. R.; Mervin, A. H. Development of Novel Cutting Tool with a Micro-hole Pattern on PCD Insert in Machining of Titanium Alloy. J. Manuf. Processes. 2018, 36, 93–103. DOI: 10.1016/j.jmapro.2018.09.028.
  • Pramanik, A.;. Problems and Solutions in Machining of Titanium Alloys. Int. J. Adv. Manuf. Technol. 2014, 70(5–8), 919–928. DOI: 10.1007/s00170-013-5326-x.
  • Gajrani, K. K.; Suvin, P. S.; Kailas, S. V.; Sankar, M. R. Hard Machining Performance of Indigenously Developed Green Cutting Fluid Using Flood Cooling and Minimum Quantity Cutting Fluid. J. Cleaner Prod. 2019, 206, 108–123. DOI: 10.1016/j.jclepro.2018.09.178.
  • Sun, Y.; Sun, J.; Li, J. Modeling and Experimental Study of Temperature Distributions in End Milling Ti6Al4V with Solid Carbide Tool. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2017, 231(2), 217–227. DOI: 10.1177/0954405415577553.
  • Moriwaki, T.; Shamoto, E. Ultraprecision Diamond Turning of Stainless Steel by Applying Ultrasonic Vibration. CIRP Ann.-Manuf. Technol. 1991, 40(1), 559–562. DOI: 10.2493/jjspe.57.1983.
  • Amini, S.; Khosrojerdi, M.; Nosouhi, R. Elliptical Ultrasonic–assisted Turning Tool with Longitudinal and Bending Vibration Modes. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2017, 231(8), 1389–1395. DOI: 10.1177/0954405415592196.
  • Xu, Y.; Zou, P.; He, Y.; Chen, S.; Tian, Y.; Gao, X. Comparative Experimental Research in Turning of 304 Austenitic Stainless Steel with and without Ultrasonic Vibration. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2017, 231(15), 2885–2901. DOI: 10.1177/0954406216642262.
  • Lotfi, M.; Amini, S.; Aghaei, M. Tool Wear Prediction and Surface Improvement in Vibration Cutting. Tribol. Trans. 2018, 61(3), 414–423. DOI: 10.1080/10402004.2017.1339840.
  • Zou, L.; Huang, Y.; Zhou, M.; Duan, L. Effect of Cryogenic Minimum Quantity Lubrication on Machinability of Diamond Tool in Ultraprecision Turning of 3cr2nimo Steel. Mater. Manuf. Processes. 2017, 33(9), 943–949. DOI: 10.1080/10426914.2017.1376077.
  • Haidong, Z.; Ping, Z.; Wenbin, M.; Zhongming, Z. A Study on Ultrasonic Elliptical Vibration Cutting of Inconel 718. Shock Vib. 2016, 2016, 1–11. DOI: 10.1155/2016/3638574.
  • Song, Y. C.; Park, C. H.; Moriwaki, T. Mirror Finishing of Co–Cr–Mo Alloy Using Elliptical Vibration Cutting. Precis. Eng. 2010, 34, 784–789. DOI: 10.1016/j.precisioneng.2010.02.003.
  • Li, Z.; Jin, G.; Fang, F.; Gong, H.; Jia, H. Ultrasonically Assisted Single Point Diamond Turning of Optical Mold of Tungsten Carbide. Micromachines. 2018, 9, 77. DOI: 10.3390/mi9020077.
  • Xu, W. X.; Zhang, L. C. Effect of Frequency and Amplitude on the Performance of Elliptic Vibration-assisted Cutting of Fibre-reinforced Polymer Composites. Adv. Mater. Res. 2014, 1017, 753–757. DOI: 10.4028/www.scientific.net/AMR.1017.753.
  • Xu, W. X.; Zhang, L. C. Ultrasonic Vibration-assisted Machining: Principle, Design and Application. Adv. Manuf. 2015, 3(3), 173–192. DOI: 10.1007/s40436-015-0115-4.
  • Koshimizu, S.;. Ultrasonic Vibration-assisted Cutting of Titanium Alloy. Key Eng. Mater. 2009, 389–390, 277–282. DOI: 10.4028/www.scientific.net/kem.389-390.277.
  • Muhammad, R.; Maurotto, A.; Demiral, M.; Roy, A.; Silberschmidt, V. V. Thermally Enhanced Ultrasonically Assisted Machining of Ti Alloy. CIRP J. Manuf. Sci. Technol. 2014, 7(2), 159–167. DOI: 10.1016/j.cirpj.2014.01.002.
  • Cakir, F. H.; Gurgen, S.; Sofuoglu, M. A.; Celik, O. N.; Kushan, M. C. Finite Element Modeling of Ultrasonic Assisted Turning of Ti6al4v Alloy. Procedia Soc. Behav. Sci. 2015, 195, 2839–2848. DOI: 10.1016/j.sbspro.2015.06.404.
  • Zhang, Y.; Zhou, Z.; Wang, J.; Li, X. Diamond Tool Wear in Precision Turning of Titanium Alloy. Mater. Manuf. Processes. 2013, 28(10), 1061–1064. DOI: 10.1080/10426914.2013.773018.
  • Bai, W.; Sun, R.; Leopold, J.; Silberschmidt, V. V. Microstructural Evolution of Ti6al4v in Ultrasonically Assisted Cutting: Numerical Modelling and Experimental Analysis. Ultrasonics. 2017, 78, 70–82. DOI: 10.1016/j.ultras.2017.03.005.
  • Heidari, M.; Yan, J. Nanometer-scale Chip Formation and Surface Integrity of Pure Titanium in Diamond Turning. Int. J. Adv. Manuf. Technol. 2018, 95, 479–492. DOI: 10.1007/s00170-017-1185-1.
  • Schneider, F.; Lohkamp, R.; Sousa, F. J. P.; Müller, R.; Aurich, J. C. Analysis of the Surface Integrity in Ultra-precision Cutting of Cp-titanium by Investigating the Chip Formation. Procedia CIRP. 2014, 13, 55–60. DOI: 10.1016/j.procir.2014.04.010.
  • Ezugwu, E. O.; Bonney, J. Finish Machining of Nickel-base Inconel 718 Alloy with Coated Carbide Tool under Conventional and High-pressure Coolant Supplies. Tribol. Trans. 2005, 48(1), 76–81. DOI: 10.1080/05698190590899958.
  • Nath, C.; Rahman, M.; Neo, K. S. Machinability Study of Tungsten Carbide Using PCD Tools under Ultrasonic Elliptical Vibration Cutting. Int. J. Mach. Tools Manuf. 2009, 49(14), 1089–1095. DOI: 10.1016/j.ijmachtools.2009.07.006.
  • Zhang, J. Micro/Nano Machining of Steel and Tungsten Carbide Utilizing Elliptical Vibration Cutting Technology. PhD Thesis, Nagoya University, Nagoya, 2014.
  • Zou, L.; Huang, Y.; Zhou, M.; Duan, L. Investigation on Diamond Tool Wear in Ultrasonic Vibration-assisted Turning Die Steels. Mater. Manuf. Processes. 2017, 32(13), 1505–1511. DOI: 10.1080/10426914.2017.1291958.
  • Tan, R.; Zhao, X.; Zou, X.; Sun, T. A Novel Ultrasonic Elliptical Vibration Cutting Device Based on A Sandwiched and Symmetrical Structure. Int. J. Adv. Manuf. Technol. 2018, 97, 1397–1406. DOI: 10.1007/s00170-018-2015-9.
  • Yip, W. S.; To, S. Tool Life Enhancement in Dry Diamond Turning of Titanium Alloys Using an Eddy Current Damping and a Magnetic Field for Sustainable Manufacturing. J. Cleaner Prod. 2017, 168, 929–939. DOI: 10.1016/j.jclepro.2017.09.100.
  • Gerez, J. M.; Sanchez‐Carrilero., M.; Salguero, J.; Batista, M.; Marcos, M. A SEM and EDS Based Study of the Microstructural Modifications of Turning Inserts in the Dry Machining of Ti6Al4V Alloy. AIP Conf. Proc. 2009, 1181, 567–574. DOI: 10.1063/1.3273676.
  • Zhang, X.; Senthil Kumar, A.; Rahman, M.; Nath, C.; Liu, K. An Analytical Force Model for Orthogonal Elliptical Vibration Cutting Technique. J. Manuf. Processes. 2012, 14(3), 378–387. DOI: 10.1016/j.jmapro.2012.05.006.
  • Hu, L. Research on Diamond Tool Wear and its Ultrasonic Vibration Suppression of Ultraprecision Cutting Titanium Alloy. PhD Thesis, Harbin Institute of Technology, Harbin, 2015.
  • Faga, M. G.; Priarone, P. C.; Robiglio, M.; Settineri, L.; Tebaldo, V. Technological and Sustainability Implications of Dry, Near-dry, and Wet Turning of Ti-6Al-4V Alloy. Int. J. Precis. Eng. Manuf. Green Technol. 2017, 4(2), 129–139. DOI: 10.1007/s40684-017-0016-z.
  • Kaynak, Y.; Gharibi, A. Progressive Tool Wear in Cryogenic Machining: the Effect of Liquid Nitrogen and Carbon Dioxide. J. Manuf. Mater. Process. 2018, 2, 31. DOI: 10.3390/jmmp2020031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.