292
Views
9
CrossRef citations to date
0
Altmetric
Articles

Machining of sub-cooled low carbon tool steel by wire-EDM

, &
Pages 1316-1325 | Received 06 May 2019, Accepted 27 Aug 2019, Published online: 09 Sep 2019

References

  • Singh, V.; Bhandari, R.; Yadav, V. K. An Experimental Investigation on Machining Parameters of AISI D2 Steel Using WEDM. Int. J. Adv. Manufact. Technol. 2017, 93, 203–214. DOI: 10.1007/s00170-016-8681-6.
  • Dewangan, S.; Biswas, C.; Gangopadhyay, S. Influence of Different Tool Electrode Materials on EDMed Surface Integrity of AISI P20 Tool Steel. Mater. Manuf. Processes. 2014, 29, 1387–1394. DOI: 10.1080/10426914.2014.930892.
  • Amorim, F. L.; Weingaertner, W. L. The Behavior of Graphite and Copper Electrodes on the Finish Die-sinking Electrical Discharge Machining (EDM) of AISI P20 Tool Steel. J. Braz. Soc. Mech. Sci. Eng. 2007, 29, 366–371. DOI: 10.1590/S1678-58782007000400004.
  • Dewangan, S.;. Experimental Investigation of Machining Parameters for EDM Using U-shaped Electrode of AISI P20 Tool Steel; Department of Mechanical Engineering; National Institute of Technology Rourkela (India): Rourkela, India, 2010.
  • Singh, H.; Garg, R. Effects of Process Parameters on Material Removal Rate in WEDM. J. Achiev. Mater. Manuf. Eng. 2009, 32, 70–74.
  • Reddy, C. B.; Reddy, D. R.; Reddy, C. E. Experimental Investigation of Surface Finish and Material Removal Rate of P20 Die Steel in Wire-EDM Using Multiple Regression Analysis. Int. J. Eng. Technol. 2012, 1, 1.
  • Mahendra, B.; Thakor, N. J. Surface Topology Evaluation of P20 Steel by Multi-pass Cutting Strategy in Wire EDM. Int. J. Eng. Res. Appl. 2017, 7, 72–76. DOI: 10.9790/9622-0704057276.
  • Tated, R.; Patil, P. Comparison of Effects of Cryogenic Treatment on Different Types of Steels: A Review. Int. Conf. Comput. Intel. 2012.
  • Kumar, S.; Singh, R.; Batish, A.; Singh, T. Modeling the Tool Wear Rate in Powder Mixed Electro-discharge Machining of Titanium Alloys Using Dimensional Analysis of Cryogenically Treated Electrodes and Workpiece. Proc. Institut. Mech. Eng. Part E . Process Mech. Eng. 2017, 231, 271–282.
  • Seah, K.; Rahman, M.; Yong, K. Performance Evaluation of Cryogenically Treated Tungsten Carbide Cutting Tool Inserts. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2003, 217, 29–43.
  • Firouzdor, V.; Nejati, E.; Khomamizadeh, F. Effect of Deep Cryogenic Treatment on Wear Resistance and Tool Life of M2 HSS Drill. J. Mater. Process. Technol. 2008, 206, 467–472. DOI: 10.1016/j.jmatprotec.2007.12.072.
  • Reddy, S. T.; Sorna, T.; Reddy, M. V.; Venkatram, R. Machinability of C45 Steel with Deep Cryogenic Treated Tungsten Carbide Cutting Tool Inserts. Int. J. Refract. Met. Hard Mater. 2009, 27, 181–185. DOI: 10.1016/j.ijrmhm.2008.04.007.
  • Abdulkareem, S.; AliKhan, A.; Konneh, M. Cooling Effect on Electrode and Process Parameters in EDM. Mater. Manuf. Processes. 2010, 25, 462–466. DOI: 10.1080/15394450902996619.
  • Kapoor, J.; Singh, S.; Khamba, J. S. Effect of Cryogenic Treated Brass Wire Electrode on Material Removal Rate in Wire Electrical Discharge Machining. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2012, 226(11), 2750–2758.
  • Srivastava, V.; Pandey, P. M. Performance Evaluation of Electrical Discharge Machining (EDM) Process Using Cryogenically Cooled Electrode. Mater. Manuf. Processes. 2012, 27, 683–688. DOI: 10.1080/10426914.2011.602790.
  • Jafferson, J.; Hariharan, P. Machining Performance of Cryogenically Treated Electrodes in Micro-electric Discharge Machining: A Comparative Experimental Study. Mater. Manuf. Processes. 2013, 28, 397–402. DOI: 10.1080/10426914.2013.763955.
  • Hui, Z.; Liu, Z.; Cao, Z.; Qiu, M. Effect of Cryogenic Cooling of Tool Electrode on Machining Titanium Alloy (ti-6al-4v) during EDM. Mater. Manuf. Processes. 2016, 31, 475–482. DOI: 10.1080/10426914.2015.1037893.
  • Paulin, P.;. Frozen Gears. Gear Technol. 1993, 10, 26–29.
  • Yugandhar, T.; Krishnan, P. K.; Rao, C. V. B.; Kalidas, R. Cryogenic Treatment and It’s Effect on Tool Steel. 6th International tooling conference, Karlstad, Sweden. 2009, 671–683. DOI:10.1177/1753193409101469
  • Vaccari, J.;. Deep Freeze Improves Products. Am. Mach. 1983, 130, 90–92.
  • Bayer, H.;. Can I Benefit from the Use of Low Temperature Treatment. Steel Process. 1953, 502–508.
  • Nayak, B. B.; Mahapatra, S. S. Optimization of WEDM Process Parameters Using Deep Cryotreated Inconel 718 as Work Material. Eng. Sci. Technol. Int. J. 2016, 19, 161–170. DOI: 10.1016/j.jestch.2015.06.009.
  • Gill, S. S.; Singh, H.; Singh, R.; Singh, J. Cryoprocessing of Cutting Tool Materials a Review. Int. J. Adv. Manuf. Technol. 2010, 48, 175–192. DOI: 10.1007/s00170-009-2263-9.
  • Priyadarshini, M.; Behera, A.; Biswas, K. C. Investigation on the Metallurgy of AISI P20 Tool Steel by Sub-cooling. (Working paper).
  • Amin, D.; Mehta, V.; Rajpurohit, S.; Amin, D.; Mehta, V.; Rajpurohit, S. A Review Paper on Wire Electric Discharge Machining of Cryo Treated Ti6Al4V. Int. J. Innovative Res. Sci. Technol. 2016, 2, 173–177.
  • Rajan, T. V.; Sharma, C. P.; Sharma, A. Heat Treatment: Principles and Techniques; PHI learning Pvt. Ltd, 2011.
  • ASTM Standard. E384, Standard Test Method for Micro-indentation Hardness of Materials; ASTM International: West Conshohocken, PA, 2000.
  • Yadav, V.; Jain, V. K.; Dixit, P. M. Thermal Stresses Due to Electrical Discharge Machining. Int. J. Mach. Tools Manuf. 2002, 42, 877–888. DOI: 10.1016/S0890-6955(02)00029-9.
  • Mussada, E. K.; Hua, C. C.; Rao, A. K. P. Surface Hardenability Studies of the Die Steel Machined by WEDM. Mater. Manuf. Processes. 2018, 33, 1745–1750. DOI: 10.1080/10426914.2018.1476695.
  • Saha, P.; Tarafdar, D.; Pal, S. K.; Saha, P.; Srivastava, A. K.; Das, K. Multi-objective Optimization in Wire-electro-discharge Machining of TiC Reinforced Composite through Neuro-Genetic Technique. Appl. Soft Comput. 2013, 13(4), 2065–2074. DOI: 10.1016/j.asoc.2012.11.008.
  • Arooj, S.; Shah, M.; Sadiq, S.; Jaffery, S. H. I.; Khushnood, S. Effect of Current in the EDM Machining of Aluminum 6061 T6 and Its Effect on the Surface Morphology. Arab. J. Sci. Eng. 2014, 39, 4187–4199. DOI: 10.1007/s13369-014-1020-z.
  • Chen, Z.; Wang, X.; Bhakhri, V.; Giuliani, F.; Atkinson, A. Nanoindentation of Porous Bulk and Thin Films of La0. 6sr0. 4co0. 2fe0. 8O3− δ. Acta Mater. 2013, 61(15), 5720–5734. DOI: 10.1016/j.actamat.2013.06.016.
  • Nadig, D.; Ramakrishnan, V.; Sampath, P. K.; Prashanth, C. Effect of Cryogenic Treatment on Thermal Conductivity Properties of Copper. AIP Conference Proceedings, Bangalore; 2012, 133–139. DOI:10.1177/1753193412451383
  • Vinothkumar, T. S.; Kandaswamy, D.; Prabhakaran, G.; Rajadurai, A. Effect of Dry Cryogenic Treatment on Vickers Hardness and Wear Resistance of New Martensitic Shape Memory Nickel-titanium Alloy. Eur. J. Dentist. 2015, 9, 513. DOI: 10.4103/1305-7456.172626.
  • Amini, K.; Akhbarizadeh, A.; Javadpour, S. Investigating the Effect of Holding Duration on the Microstructure of 1.2080 Tool Steel during the Deep Cryogenic Heat Treatment. Vacuum. 2012, 86, 1534–1540. DOI: 10.1016/j.vacuum.2012.02.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.