125
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Design of high-manganese nanostructured austenitic steel with particle swarm optimization

&
Pages 635-642 | Received 31 Mar 2019, Accepted 25 Oct 2019, Published online: 07 May 2020

References

  • Grässel, O.; Frommeyer, G.; Derder, C.; Hofmann, H. Phase Transformations and Mechanical Properties of Fe-Mn-Si-Al TRIP-steels. J. Phys. IV France. 1997, 7, 383–388. DOI: 10.1051/jp4:1997560.
  • Saeed-Akbari, A.; Imlau, J.; Prahl, U.; Bleck, W. Derivation and Variation in Composition-dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-manganese Steels. Metall. Mater. Trans. A. 2009, 40, 3076–3090. DOI: 10.1007/s11661-009-0050-8.
  • Sato, K.; Ichinose, M.; Hirotsu, Y.; Inoue, Y. Effects of Deformation Induced Phase Transformation and Twinning on the Mechanical Properties of Austenitic Fe-Mn-Al Alloys. ISIJ Int. 1989, 29, 868–877. DOI: 10.2355/isijinternational.29.868.
  • Yoo, J. D.; Park, K.-T. Microband-induced Plasticity in a High Mn–Al–C Light Steel. Mater. Sci. Eng. A. 2008, 496, 417–424. DOI: 10.1016/j.msea.2008.05.042.
  • Somani, M. C.; Karjalainen, L. P. Innovative Approaches in Physical Simulation and Modeling for Optimal Design and Processing of Advanced High Strength Steels. Mater. Manuf. Process. 2010, 25, 133–141. DOI: 10.1080/10426910903158223.
  • Torabinejad, V.; Zarei-Hanzaki, A.; Moemeni, S. An Analysis to the Kinetics of Austenite Recrystallization in Fe-30Mn-5Al Steel. Mater. Manuf. Process. 2012, 28, 36–41. DOI: 10.1080/10426914.2012.681413.
  • Zambrano, O. A.;. Stacking Fault Energy Maps of Fe–Mn–Al–C–Si Steels: Effect of Temperature, Grain Size, and Variations in Compositions. J. Eng. Mater-T. ASME. 2016, 138, 041010. DOI: 10.1115/1.4033632.
  • Kim, J.; De Cooman, B. C. On the Stacking Fault Energy of Fe-18 Pct Mn-0.6 Pct C-1.5 Pct Al Twinning-induced Plasticity Steel. Metall. Mater. Trans. A. 2011, 42, 932–936. DOI: 10.1007/s11661-011-0610-6.
  • Balogh, L.; Ribárik, G.; Ungár, T. Stacking Faults and Twin Boundaries in fcc Crystals Determined by X-ray Diffraction Profile Analysis. J. Appl. Phys. 2006, 100, 023512. DOI: 10.1063/1.2216195.
  • Limmer, K. R.; Medvedev, J. E.; Van Aken, D. C.; Medvedev, N. I. Ab Initio Simulation of Alloying Effect on Stacking Fault Energy in fcc Fe. Comput. Mater. Sci. 2015, 99, 253–255. DOI: 10.1016/j.commatsci.2014.12.015.
  • De Cooman, B. C.; Estrin, Y.; Kim, S. K. Twinning-induced Plasticity (TWIP) Steels. Acta Mater. 2018, 142, 283–362. DOI: 10.1016/j.actamat.2017.06.046.
  • Olson, G.; Cohen, M. A General Mechanism of Martensitic Nucleation: Part I. General Concepts and the FCC→ HCP Transformation. Metall. Trans. 1976, A7, 1897–1904.
  • Yuan, G. W.; Huang, M. X. Supper Strong Nanostructured TWIP Steels for Automotive Applications. Prog. Nat. Sci.: Mater. Int. 2014, 24, 50–55. DOI: 10.1016/j.pnsc.2014.01.004.
  • Saha, R.; Ueji, R.; Tsuji, N. Nanocrystalline Twinning Induced Plasticity Steel with Superior Mechanical Properties Fabricated by Cold Rolling and Annealing. Mater. Scie. Forum. 2013, 753, 518–521. DOI: 10.4028/www.scientific.net/MSF.753.
  • Fu, B.; Fu, L.; Wang, H.; Wang, W.; Shan, A. Microstructures and Deformation Behavior of Nanograined and Ultrafine-grained high-Mn Austenitic Steel Fabricated by Asymmetric-symmetric Rolling. IOP Conf. Ser. Mater. Sci. Eng. 2014, 63, 012062. DOI: 10.1088/1757-899X/63/1/012062.
  • Pierce, D. T.; Jiménez, J. A.; Bentley, J.; Raabe, D.; Oskay, C.; Wittig, J. E. The Influence of Manganese Content on the Stacking Fault and austenite/ε-martensite Interfacial Energies in Fe–Mn–(Al–Si) Steels Investigated by Experiment and Theory. Acta Mater. 2014, 68, 253–283. DOI: 10.1016/j.actamat.2014.01.001.
  • Curtze, S.; Kuokkala, V. -T. Dependence of Tensile Deformation Behavior of TWIP Steels on Stacking Fault Energy, Temperature and Strain Rate. Acta Mater. 2010, 58, 5129–5141. DOI: 10.1016/j.actamat.2010.05.049.
  • de Andrés, C. G.; Caballero, F. G.; Capdevila, C.; Bhadeshia, H. K. D. H. Modelling of Kinetics and Dilatometric Behavior of Non-isothermal Pearlite-to-austenite Transformation in an Eutectoid Steel. Scr. Mater. 1998, 39, 791–796. DOI: 10.1016/S1359-6462(98)00146-8.
  • Jun, J.-H.; Choi, C.-S. Variation of Stacking Fault Energy with Austenite Grain Size and Its Effect on the MS Temperature of γ→ε Martensitic Transformation in Fe–Mn Alloy. Mater. Sci. Eng. A. 1998, 257, 353–356. DOI: 10.1016/S0921-5093(98)00994-0.
  • Takaki, S.; Nakatsu, H.; Tokunaga, Y. Effects of Austenite Grain Size on ε Martensitic Transformation in Fe-15mass%Mn Alloy. Mater. Trans. JIM. 1993, 34, 489–495. DOI: 10.2320/matertrans1989.34.489.
  • Lee, Y.-K.; Choi, C. Driving Force for γ→ε Martensitic Transformation and Stacking Fault Energy of γ in Fe-Mn Binary System. Metall. Mater. Trans. A. 2000, 31, 355–360. DOI: 10.1007/s11661-000-0271-3.
  • Dumay, A.; Chateau, J. P.; Allain, S.; Migot, S.; Bouaziz, O. Influence of Addition Elements on the Stacking-fault Energy and Mechanical Properties of an Austenitic Fe–Mn–C Steel. Mater. Sci. Eng. A. 2008, 483, 184–187. DOI: 10.1016/j.msea.2006.12.170.
  • Allain, S.; Chateau, J.-P.; Bouaziz, O.; Migot, S.; Guelton, N. Correlations between the Calculated Stacking Fault Energy and the Plasticity Mechanisms in Fe–Mn–C Alloys. Mater. Sci. Eng. A. 2004, 387, 158–162. DOI: 10.1016/j.msea.2004.01.059.
  • Yang, W. S.; Wan, C. M. The Influence of Aluminium Content to the Stacking Fault Energy in Fe-Mn-Al-C Alloy System. J. Mater. Sci. 1990, 25, 1821–1823. DOI: 10.1007/BF01045392.
  • Kaufman, L.;. Proceedings of the Fourth Calphad Meeting Workshop on Computer Based Coupling of Thermochemical and Phase Diagram Data Held 18–22 August 1975 at the National Bureau of Standards, Gaithersburg, Maryland. CALPHAD. 1977, 1, 7–89. DOI: 10.1016/0364-5916(77)90018-9.
  • Hillert, M.; Jarl, M. A Model for Alloying in Ferromagnetic Metals. CALPHAD. 1978, 2, 227–238. DOI: 10.1016/0364-5916(78)90011-1.
  • Jin, J.-E.; Jung, M.; Lee, C.-Y.; Jeong, J.; Lee, Y.-K. Néel Temperature of High Mn Austenitic Steels. Met. Mater. Int. 2012, 18, 419–423. DOI: 10.1007/s12540-012-3006-2.
  • Li, L.; Hsu, T. Y. Gibbs Free Energy Evaluation of the fcc(γ) and hcp(ε) Phases in Fe-Mn-Si Alloys. CALPHAD. 1997, 21;, 443–448. DOI: 10.1016/S0364-5916(97)00044-8.
  • Haasea, C.; Kühbach, M.; Barrales-Mora, L. A.; Wong, S. L.; Roters, F.; Molodov, D. A.; Gottstein, G. Recrystallization Behavior of a High-manganese Steel: Experiments and Simulations. Acta Mater. 2015, 100, 155–168. DOI: 10.1016/j.actamat.2015.08.057.
  • Lia, B.; Cao, B. Y.; Ramesh, K. T.; Ma, E. A Nucleation Mechanism of Deformation Twins in Pure Aluminum. Acta Mater. 2009, 57, 4500–4507. DOI: 10.1016/j.actamat.2009.06.014.
  • Xu, Z.; Lin, N.; Jiang, H.; Liu, L. Deformation Nanotwins in Coarse-grained Aluminum Alloy at Ambient Temperature and Low Strain Rate. Mater. Sci. Eng. A. 2015, 621, 272–276.
  • Liao, X. Z.; Zhao, Y. H.; Srinivasan, S. G.; Zhu, Y. T.; Valiev, R. Z.; Gunderov, D. V. Deformation Twinning in Nanocrystalline Copper at Room Temperature and Low Strain Rate. Appl. Phys. Lett. 2004, 84, 592–594. DOI: 10.1063/1.1644051.
  • Chen, M.; Ma, E.; Hemker, K. J.; Sheng, H.; Wang, Y.; Cheng, X. Deformation Twinning in Nanocrystalline Aluminum. Science. 2003, 300, 1275–1277. DOI: 10.1126/science.1083727.
  • Bonyadi, M. R.; Michalewicz, Z. Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review. Evol. Comput. 2017, 25, 1–54. DOI: 10.1162/EVCO_r_00180.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.