414
Views
14
CrossRef citations to date
0
Altmetric
Articles

Machinability Analysis and ANFIS modelling on Advanced Machining of Hybrid Metal Matrix Composites for Aerospace Applications

, , , , &
Pages 1866-1881 | Received 08 Aug 2019, Accepted 31 Oct 2019, Published online: 09 Dec 2019

References

  • Suthar, J.; Patel, K. M. Processing Issues, Machining, and Applications of Aluminum Metal Matrix Composites. Mater. Manuf. Process. 2017. DOI: 10.1080/10426914.2017.1401713.
  • Chawla, K. K.;. Composite Materials Science and Engineering; Springer-Verlag: New York, 2012; pp 239–243.
  • Gay, D.;. Composite Materials: Design and Applications; CRC Press: Boca Raton, FL, 2014; pp 203–229.
  • Lalmuan, S. K.; Das, S.; Chandrasekaran, M.; Tamang, S. K. ScienceDirect Machining Investigation on Hybrid Metal Matrix Composites- A Review. Mater. Today Proc. 2017, 4(8), 8167–8175. DOI: 10.1016/j.matpr.2017.07.158.
  • Taha, M. A.; El-mahallawy, N. A.; El-sabbagh, A. M. Some Experimental Data on Workability of Aluminium- Particulate-Reinforced Metal Matrix Composites. J. Mater. Process. Tech. 2007, 2, 380–385. DOI: 10.1016/j.jmatprotec.2007.07.047.
  • Aravindan, S.; Rao, P. V.; Ponappa, K. Evaluation of Physical and Mechanical Properties of AZ91D/SiC Composites by Two Step Stir Casting Process. J. Magnesium Alloys. 2015, 3(1), 52–62. DOI: 10.1016/j.jma.2014.12.008.
  • Auradi, V.; Kori, S. A. Preparation and Evaluation of Mechanical Properties of 6061al-b4cp Composites Produced via Two-stage Melt Stirring. Mater. Manuf. Process. 2014. DOI: 10.1080/10426914.2014.892617.
  • Ravikumar, K.; Kiran, K.; Sreebalaji, V. S. Micro Structural Characteristics and Mechanical Behaviour of Aluminium Matrix Composites Reinforced with Titanium Carbide. J. Alloys Compd. 2017, 723, 795–801. DOI: 10.1016/j.jallcom.2017.06.309.
  • Manikandan, N.; Arulkirubakaran, D.; Palanisamy, D.; Raju, R. Influence of Wire-EDM Textured Conventional Tungsten Carbide Inserts in Machining of Aerospace Materials (Ti–6al–4v alloy). Mater. Manuf. Process. 2018, 34(1), 103–111. DOI: 10.1080/10426914.2018.1544712.
  • Manikandan, N.; Binoj, J. S.; Varaprasad, K. C.; Sabari, S. S.; Raju, R. Investigations on Wire Spark Erosion Machining of Aluminum-Based Metal Matrix Composites. Adv. Manuf. Technol. 2019. DOI: 10.1007/978-981-13-6374-0_42.
  • Pramanik, A.; Littlefair, G. Wire EDM Mechanism of MMCs with the Variation of Reinforced Particle Size. Mater. Manuf. Process. 2016. DOI: 10.1080/10426914.2015.1117621.
  • Karthik, S.; Prakash, K. S.; Gopal, P. M.; Jothi, S. Influence of Materials and Machining Parameters on WEDM of Al/AlCoCrFeNiMo 0.5 MMC. Mater. Manuf. Processes. 2019, 34, 759–768. DOI: 10.1080/10426914.2019.1594250.
  • Sharma, A.; Garg, M. P.; Goyal, K. K.; Kumar, A. Investigation of Wire Electrical Discharge Machining of ZrSiO4p/Al 6063 MMC. Int. J. Mach. Mater. 2016, 18(4), 392–411. DOI: 10.1504/IJMMM.2016.077724.
  • Pujara, J. M.; Kothari, K. D.; Gohil, A. V. Process Parameter Optimization for MRR and Surface Roughness during Machining LM6 Aluminum MMC on WEDM. Adv. Eng. Forum. 2017, 20, 42–50. DOI: 10.4028/www.scientific.net/aef.20.42.
  • Phate, M. R.; Toney, S. B. Modeling and Prediction of WEDM Performance Parameters for Al/SiCp MMC Using Dimensional Analysis and Artificial Neural Network. Eng. Sci. Technol. Int. J. 2019, 22(2), 468–476. DOI: 10.1016/j.jestch.2018.12.002.
  • Ahilan, C.; Kumanan, S.; Sivakumaran, N. Multi-Objective Optimisation of CNC Turning Process Using Grey Based Fuzzy Logic. Int. J. Mach. Mach. Mater. 2009, 5(4), 434–451. DOI: 10.1504/IJMMM.2009.026902.
  • Lin, J. L.; Wang, K. S.; Yan, B. H.; Tarng, Y. S. Optimization of the Electrical Discharge Machining Process Based on the Taguchi Method with Fuzzy Logics. J. Mater. Process. Technol. 2000, 102, 48–55. DOI: 10.1016/s0924-0136(00)00438-6.
  • Pandey, R. K.; Panda, S. S. Optimization of Bone Drilling Parameters Using Grey-Based Fuzzy Algorithm. Measurement. 2013, 47, 386–392. DOI: 10.1016/j.measurement.2013.09.007.
  • Suresh, P.; Marimuthu, K.; Ranganathan, S.; Rajmohan, T. Optimization of Machining Parameters in Turning of Al-SiC-Gr Hybrid Metal Matrix Composites Using Grey-Fuzzy Algorithm. Trans. Nonferrous Met. Soc. China. 2014, 24(9), 2805–2814. DOI: 10.1016/S1003-6326(14)63412-9.
  • Das, B.; Roy, S.; Rai, R. N.; Saha, S. C. Application of Grey Fuzzy Logic for the Optimization of CNC Milling Parameters for Al–4.5% Cu–TiC MMCs with Multi-performance Characteristics. Eng. Sci. Technol. Int. J. 2016, 19, 857–865. DOI: 10.1016/j.jestch.2015.12.002.
  • Abuzied, H. H.; Awad., M. A.; Senbel, H. A. Prediction of Electrochemical Machining Process Parameters Using Artificial Neural Networks. Int. J. Computer Sci. Eng. 2012, 36, 6135–6139. DOI: 10.1016/j.eswa.2008.07.019.
  • Jang, J. S. R.; Sun, C.-T.; Mizutani, E. Neuro-fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence; Prentice Hall: Upper Saddle River, NJ.20, 1997; pp 503–523.
  • Baseri, R. T. H.; Moharami, R. Multi-Responses Optimization of Ultrasonic Machining Process. J. Intell. Manuf. 2013, 26, 745–753. DOI: 10.1007/s10845-013-0831-1.
  • Dewangan, S.; Gangopadhyay, S.; Biswas, C. K. Multi-Response Optimization of Surface Integrity Characteristics of EDM Process Using Grey-Fuzzy Logic-Based Hybrid Approach. Eng. Sci. Technol. Int. J. 2015, 18(3), 361–368. DOI: 10.1016/j.jestch.2015.01.009.
  • Caydas, U.; Hascalık, A.; Ekici, S. An Adaptive Neuro-fuzzy Inference System (ANFIS) Model for wire-EDM. Expert Syst. Appl. 2009, 36, 6135–6139. DOI: 10.1016/j.eswa.2008.07.019.
  • Palanisamy, D.; Senthil, P. Development of ANFIS Model and Machinability Study on Dry Turning of Cryo-treated PH Stainless Steel with Various Inserts. Mater. Manuf. Process. 2017, 32(6), 654–669. DOI: 10.1080/10426914.2016.1221091.
  • Kao, P. S.; Hocheng, H. Optimization of Electrochemical Polishing of Stainless Steel by Grey Relational Analysis. Journal of Materials Processing Technology. 2003, 140, 255–259. DOI: 10.1016/s0924-0136(03)00747-7.
  • Kor, M.; Abkhoshk, E.; Tao, D.; Chen, G. L.; Modarres, H. Modeling and Optimization of High Chromium Alloy Wear in Phosphate Laboratory Grinding Mill with Fuzzy Logic and Particle Swarm Optimization Technique. Miner. Eng. 2010, 23(9), 713–719. DOI: 10.1016/j.mineng.2010.04.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.