362
Views
12
CrossRef citations to date
0
Altmetric
Articles

Micro-channel fabrication on NiTi shape memory alloy substrate using Nd3+: YAG laser

ORCID Icon, , , , , , , & show all
Pages 270-278 | Received 07 Apr 2019, Accepted 08 Jan 2020, Published online: 28 Jan 2020

References

  • AbuZaiter, A. Z.; Hikmat, O. F.; Nafea, M.; Mohamed, S. M. A. Design and Fabrication of a Novel XYθz Monolithic Micro-positioning Stage Driven by NiTi Shape-memory-alloy Actuators. Smart Mater. Struct. 2016, 25(10), 105004. DOI: 10.1088/0964-1726/25/10/105004.
  • Dahmardeh, M.; Mohamed, S. M. A.; Tanveer, S.; Tee, M. H.; Mehran, V. M.; Alireza, N.; Kenichi, T. High‐power MEMS Switch Enabled by Carbon‐nanotube Contact and Shape‐memory‐alloy Actuator. Phys. Status Solidi A. 2013, 210(4), 631–638. DOI: 10.1002/pssa.201228678.
  • Chen, P.-C.; Pan, C.-W.; Lee, W.-C.; Li, K.-M. An Experimental Study of Micromilling Parameters to Manufacture Microchannels on a PMMA Substrate. Int. J. Adv. Manuf. Technol. 2014, 71, 1623–1630. DOI: 10.1007/s00170-013-5555-z.
  • Sharma, P.; Tripathy, A.; Sahoo, N. Evaluation of Surface Integrity of WEDM Processed Inconel 718 for Jet Engine Application. IOP Conf. Ser. Mater. Sci. Eng. 2018, 323, 012019. DOI: 10.1088/1757-899X/323/1/012019.
  • Levi, D. S.; Nick, K.; Gregory, P. C. Smart Materials Applications for Pediatric Cardiovascular Devices. Pediatr. Res. 2008, 63(5), 552. DOI: 10.1203/PDR.0b013e31816a9d18.
  • Al-Ahmari, A. M. A.; Rasheed, M. S.; Mohammed, M. K.; Saleh, T. A Hybrid Machining Process Combining micro-EDM and Laser Beam Machining of Nickel–titanium-based Shape Memory Alloy. Mater. Manuf. Process. 2016, 31(4), 447–455. DOI: 10.1080/10426914.2015.1019102.
  • Samal, S.; Heller, L.; Brajer, J.; Tyc, O.; Kadrevek, L.; Sittner, P. Laser Annealing on the Surface Treatment of Thin Super Elastic NiTi Wire. IOP Conf. Ser. Mater. Sci. Eng. 2018, 362, 012007. DOI: 10.1088/1757-899X/362/1/012007.
  • Zeng, Z.; Panton, B.; Oliveira, J. P.; Han, A.; Zhou, Y. N. Dissimilar Laser Welding of NiTi Shape Memory Alloy and Copper. Smart Mater. Struct. 2015, 24, 125036. DOI: 10.1088/0964-1726/24/12/125036.
  • Maletta, C.; Emanuele, S.; Fabrizio, N. Temperature Dependent Fracture Properties of Shape Memory Alloys: Novel Findings and a Comprehensive Model. Sci. Rep. 2016, 6(1), 17. DOI: 10.1038/s41598-016-0024-1.
  • Darwish, S.; Ahmed, N.; Alahmari, A. M.; Mufti, N. A. A Comparison of Laser Beam Machining of Micro-channels under Dry and Wet Mediums. Int. J. Adv. Manuf. Technol. 2016, 83, 1539–1555. DOI: 10.1007/s00170-015-7658-1.
  • Prakash, S.; Kumar, S. Fabrication of Microchannels: A Review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015, 229, 1273–1288. DOI: 10.1177/0954405414535581.
  • Moghaddam, N. S.; Soheil, S.; Amirhesam, A.; Alejandro, H.; Ali, R.; Julia, K.; Michael, J. M.; Haluk, K.; Mohammad, E. Achieving Superelasticity in Additively Manufactured NiTi in Compression without Post-process Heat Treatment. Sci. Rep. 2019, 9, 41. DOI: 10.1038/s41598-018-36641-4.
  • Yan, X.; Da‐Zhi, Y. Corrosion Resistance of a Laser Spot‐welded Joint of NiTi Wire in Simulated Human Body Fluids. J. Biomed. Mater. Res. B. 2006, 77(1), 97–102. DOI: 10.1002/jbm.a.30378.
  • Abioye, T. E.; Farayibi, P. K.; Kinnel, P.; Clare, A. T. Functionally Graded Ni-Ti Microstructures Synthesised in Process by Direct Laser Metal Deposition. Int. J. Adv. Manuf. Technol. 2015, 79, 843–850. DOI: 10.1007/s00170-015-6878-8.
  • Amini, A.; Chun, C. Nature of Hardness Evolution in Nanocrystalline NiTi Shape Memory Alloys during Solid-state Phase Transition. Sci. Rep. 2013, 3, 2476. DOI: 10.1038/srep02476.
  • Lendlein, A.; Oliver, E. C. G. Reprogrammable Recovery and Actuation Behaviour of Shape-memory Polymers. Nat. Rev. Mater. 2019, 1, 1–18.
  • Zheng, H. Y.; Zareena, A. R.; Huang, H.; Lim, G. C. Studies of Femtosecond Laser-Processed Nitinol. Mater. Sci. Forum. 2003, 437–438, 277–280. DOI: 10.4028/www.scientific.net/MSF.437-438.277.
  • Padmakumar, A.; Bajakke, V. R.; Malik, A. S. D. Particulate Metal Matrix Composites and Their Fabrication via Friction Stir Processing – A Review. Mater. Manuf. Process. 2019, 34(8), 833–881. DOI: 10.1080/10426914.2019.1605181.
  • Prakas, S.; Acherjee, H. B.; Kumar, A. S.; Mitra, S. An Experimental Investigation on Nd: YAG Laser Microchanneling on Polymethyl Methacrylate Submerged in Water. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2013, 227, 508–519. DOI: 10.1177/0954405412472178.
  • Krishna, V. B.; Susmita, B.; Amit, B. Fabrication of Porous NiTi Shape Memory Alloy Structures Using Laser Engineered Net Shaping. J. Biomed. Mater. Res. B. 2009, 89(2), 481–490. DOI: 10.1002/jbm.b.31238.
  • Kongsuwan, P.; Wang, H.; Lawrence, Y. Y. Single Step Channeling in Glass Interior by Femtosecond Laser. J. Appl. Phys. 2012, 112, 023114.
  • Behera, R. R.; Sankar, M. R.; Baruah, P. K.; Sharma, A. K.; Khare, A. Experimental Investigations of Nanosecond-pulsed Nd: YAG Laser Beam Micromachining on 304 Stainless Steel. J. Micro Nanomanuf. 2018, 1(1), 62–75. DOI: 10.1177/2516598418766937.
  • Kang, H. W.; Welch, A. J. Effect of Liquid Thickness on Laser Ablation Efficiency. J. Appl. Phys. 2007, 101, 5–9. DOI: 10.1063/1.2715746.
  • Kang, H. W.; Lee, H.; Welch, A. J. Laser Ablation in a Liquid-confined Environment Using a Nanosecond Laser Pulse. J. Appl. Phys. 2008, 103, 083101. DOI: 10.1063/1.2905314.
  • Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J. Femtosecond Laser Ablation of Brass in Air and Liquid Media. J. Appl. Phys. 2013, 113, 1–6. DOI: 10.1063/1.4808455.
  • Yang, X.; Lei, M.; Jiaxiang, S. Martensitic Transformation of Ti 50 (Ni 50− X Cu X) and Ni 50 (Ti 50− X Zr X) Shape-memory Alloys. Sci. Rep. 2019, 9(1), 3221. DOI: 10.1038/s41598-019-40100-z.
  • Zhu, S.; Lu, Y. F.; Hong, M. H.; Chen, X. Y. Laser Ablation of Solid Substrates in Water and Ambient Air. J. Appl. Phys. 2001, 89, 2400–2403. DOI: 10.1063/1.1342200.
  • Chang, Y. J.; Hung, Y. C.; Kuo, C. L.; Hsu, J. C.; Ho, C. C. Hybrid Stamping and Laser Micromachining Process for Micro-scale Hole Drilling. Mater. Manuf. Process. 2017, 32(15), 1685–1691. DOI: 10.1080/10426914.2017.1328115.
  • Bisaria, H.; Pragya, S. Experimental Studies on Electrical Discharge Wire Cutting of Ni-rich NiTi Shape Memory Alloy. Mater. Manuf. Process. 2018, 33(9), 977–985. DOI: 10.1080/10426914.2017.1388518.
  • Ashish, K. S.; Akash, K.; Palani, I. A.; Anbarasu, M. Laser Assisted Wet Texturing of Flexible Polyethylene Terephthalate Substrate Using Nd 3+: YAG Laser for Photovoltaics Devices. Mater. Sci. Eng. B. 2017, 226, 78–85. DOI: 10.1016/j.mseb.2017.08.028.
  • Wang, L.; Cong, W.; Lai-Chang, Z.; Liangyu, C.; Weijie, L.; Di, Z. Phase Transformation and Deformation Behavior of NiTi-Nb Eutectic Joined NiTi Wires. Sci. Rep. 2016, 6, 23905. DOI: 10.1038/srep23905.
  • Bisaria, H.; Pragya, S. Processing of Curved Profiles on Ni-rich Nickel–titanium Shape Memory Alloy by WEDM. Mater. Manuf. Process. 2019, 34, 1–9.
  • Chen, X.; Xu, R.-Q.; Chen, J.-P.; Shen, Z.-H.; Jian, L.; Ni, X.-W. Shock-wave Propagation and Cavitation Bubble Oscillation by Nd: YAG Laser Ablation of a Metal in Water. Appl. Opt. 2004, 43, 3251–3257. DOI: 10.1364/AO.43.003251.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.