170
Views
10
CrossRef citations to date
0
Altmetric
Articles

Studies on cryogenically treated WC-Co insert at different soaking conditions

, &
Pages 545-555 | Received 05 Oct 2019, Accepted 20 Jan 2020, Published online: 10 Apr 2020

References

  • Mohamed, A. S.; Stephen, C. V. Wear and tribological performance of different ceramic tools in dry high-speed machining of Ni-Co-Cr precipitation hardenable aerospace superalloy. Tribol. Trans. 2019, 62(1), 62–77. DOI: 10.1080/10402004.2018.1486494.
  • Jebaraj, M.; Kumar, M. P. Effect of cryogenic CO2 and LN2 coolants in milling of aluminum alloy. Mater. Manuf. Process. 2019, 34(5), 511–520. DOI: 10.1080/10426914.2018.1532591.
  • Suthar, J.; Patel, K. M. Processing issues, machining, and applications of aluminum metal matrix composites. Mater. Manuf. Process. 2018, 33(5), 499–527. DOI: 10.1080/10426914.2017.1401713.
  • Dey, S.; Dey, P.; Datta, S. Rough-fuzzy-GA-based design of Al alloys having superior cryogenic performance. Mater. Manuf. Process. 2017, 32(10), 1075–1081. DOI: 10.1080/10426914.2017.1303148.
  • Das, D.; Mishra, P. C.; Singh, S.; Chaubey, A. K.; Routara, B. C. Machining performance of aluminium matrix composite and use of WPCA based Taguchi technique for multiple response optimization. Int. J. Ind. Eng. Comput. 2018, 9, 551–564. DOI: 10.5267/j.ijiec.2017.10.001.
  • Chen, Y.; Wang, J.; Chen, M. Enhancing the machining performance by cutting tool surface modifications: a focused review. Mach. Sci. Technol. 2019, 23(3), 477–509. DOI: 10.1080/10910344.2019.1575412.
  • Kumar, T. V.; Thirumurugan, R.; Viswanath, B. Influence of cryogenic treatment on the metallurgy of ferrous alloys: a review. Mater. Manuf. Process. 2017, 32(16), 1789–1805. DOI: 10.1080/10426914.2017.1317790.
  • Mokarian, B.; Amini, K.; Ghayour, H.; Gharavi, F. The combined effect of cryogenic and boronising treatments on the wear behaviour and microstructure of DIN 1.2344 steel. Trans. IMF 2019, 97(3), 121–128. DOI: 10.1080/00202967.2019.1587266.
  • Singla, A. K.; Singh, J.; Vishal, S. S. Processing of materials at cryogenic temperature and its implications in manufacturing: a review. Mater. Manuf. Process. 2018, 33(15), 1603–1640. DOI: 10.1080/10426914.2018.1424908.
  • Das, A.; Patel, S. K.; Biswal, B. B.; Das, S. R. Machinability investigation and cost estimation during finish dry hard turning of AISI 4340 steel with untreated and cryo treated cermet insert. J. Superhard Mater. 2019, 41(4), 247–264. DOI: 10.3103/S1063.
  • Naveena, B.; Thaslima, S. S. M.; Savitha, V.; Krishna, B. N. K.; Raj, D. S.; Karunamoorthy, L. Simplified MQL system for drilling AISI 304 SS using cryogenically treated drills. Mater. Manuf. Process. 2017, 32(15), 1679–1684. DOI: 10.1080/10426914.2017.1328121.
  • Senthilkumar, D.;. Influence of deep cryogenic treatment on hardness and toughness of En31 steel. Adv. Mater. Process. Technol. 2019, 5(1), 114–122. DOI: 10.1080/2374068X.2018.1530426.
  • Li, X.; Li, T.; Lo, K. H.; Kwok, C. T.; Chen, F. Influences of thermo mechanical treatments on the cryogenic treatability of a slightly unstable austenitic stainless steel. Mater. Manuf. Process. 2017, 32, 1239–1247. DOI: 10.1080/10426914.2016.1257806.
  • Pereira, W. H.; Delijaicov, S. Surface integrity of INCONEL 718 turned under cryogenic conditions at high cutting speeds. Int. J. Adv. Manuf. Technol. 2019, 104, 2163–2177. DOI: 10.1007/s00170-019-03946-1.
  • Cicek, A.; Uygur, İ.; Kıvak, T.; Altan Ozbek, N. Machinability of AISI 316 austenitic stainless steel with cryogenically treated M35 high-speed steel twist drills. J. Manuf. Sci. Eng. 2012, 134(6), 1–6. DOI: 10.1115/1.4007620.
  • Halim, N. H. A.; Haron, C. H. C.; Ghani, J. A.; Azhar, M. F. Tool wear and chip morphology in high-speed milling of hardened Inconel 718 under dry and cryogenic CO2 conditions. Wear. 2019, 426-427, 1683–1690. DOI: 10.1016/j.wear.2019.01.095.
  • Palanisamy, A.; Selvaraj, T. Optimization of turning parameters for surface integrity properties on Incoloy 800H Superalloy using cryogenically treated multi-layer CVD coated tool. Surf. Rev. Lett. 2019, 26(2), 1850139. DOI: 10.1142/S0218625X18501391.
  • Kaynak, Y.; Gharibi, A.; Ozkutuk, M. Experimental and numerical study of chip formation in orthogonal cutting of Ti-5553 alloy: the influence of cryogenic, MQL, and high-pressure coolant supply. Int. J. Adv. Manuf. Technol. 2018, 94, 1411–1428. DOI: 10.1007/s00170-017-0904-y.
  • Arguelles, A.; Barbes, F., .; Espeso, J. I.; Mateo, C. G. Cryogenic study of the magnetic and thermal stability of retained austenite in nanostructured bainite. Sci. Adv. Mater. 2019, 20(1), 673–687. DOI: 10.1080/14686996.2019.1625722.
  • Amini, K.; Akhbarizadeh, A.; Javadpour, S. Investigating the effect of holding duration on the microstructure of 1.2080 tool steel during the deep cryogenic heat treatment. Vacuum. 2012, 86(10), 1534–1540. DOI: 10.1016/j.vacuum.2012.02.013.
  • Shah, N.; Arora, K.; Dhokey, N. B.; Kumar, N. D.; Tharian, K. T. Optimization of cryogenic process for enhancing the wear resistance of novel HNMS steel for cryogenic bearings of launch vehicle. Tribol. Trans. 2019, 62(4), 712–723. DOI: 10.1080/10402004.2019.1609147.
  • Yong, J.; Ding, C. Effect of cryogenic treatment on WC–Co cemented carbides. Mater. Sci. Eng. A. 2011, 528(3), 1735–1739. DOI: 10.1016/j.msea.2010.11.009.
  • Gill, S. S.; Singh, H.; Singh, R.; Singh, J. Flank wear and machining performance of cryogenically treated tungsten carbide inserts. Mater. Manuf. Process. 2011, 26(11), 1430–1441. DOI: 10.1080/10426914.2011.557128.
  • Palanisamy, D.; Balasubramanian, K.; Manikandan, N.; Arulkirubakaran, D.; Ramesh, R. Machinability analysis of high strength materials with cryo-treated textured tungsten carbide inserts. Mater. Manuf. Process. 2019, 34(5), 502–510. DOI: 10.1080/10426914.2019.1566612.
  • Schoop, J.; Ambrosy, F.; Zanger, F.; Schulze, V.; Jawahir, I. S.; Balk, T. J. Increased surface integrity in porous tungsten from cryogenic machining with cermet cutting tool. Mater. Manuf. Process. 2016, 31(7), 823–831. DOI: 10.1080/10426914.2015.1048467.
  • Gill, S. S.; Singh, J.; Singh, H.; Singh, R. Investigation on wear behavior of cryogenically treated TiAlN coated tungsten carbide inserts in turning. Int.J. Mach. Tools Manuf. 2011, 51(1), 25–33. DOI: 10.1016/j.ijmachtools.2010.10.003.
  • Khan, A.; Maity, K. Comparative study of some machinability aspects in turning of pure titanium with untreated and cryogenically treated carbide inserts. J. Manuf. Processes. 2017, 28(1), 272–284. DOI: 10.1016/j.jmapro.2017.05.018.
  • Balamurugan, K.; Uthayakumar, M.; Sankar, S.; Hareesh, U. S.; Warrier, K. G. K. Preparation, characterisation and machining of LaPO4-Y2O3 composite by abrasive water jet machine. Int. J. Comp. Aided Eng. Technol. 2018, 10, 684–697. DOI: 10.1504/IJCAET.2018.095203.
  • Thakur, D.; Ramamoorthy, B.; Vijayaraghavan, L. Influence of different post-treatments on tungsten carbide–cobalt inserts. Mater. Lett. 2008, 62(28), 4403–4406. DOI: 10.1016/j.matlet.2008.07.043.
  • Thornton, R.; Slatter, T.; Lewis, R. Effects of deep cryogenic treatment on the wear development of H13A tungsten carbide inserts when machining AISI 1045 steel. Prod. Eng. Res. Dev. 2014, 8(3), 355–364. DOI: 10.1007/s11740-013-0518-7.
  • Upadhye, A. P.; Shah, N.; Lalge, P.; Dhokey, N. B.; Tharian, T. Evolution of ultrafine precipitates and its influence on wear mechanism in cryo processed high nitrogen martensitic steel. Tribol. Mater. Surf. Interfaces. 2019, 13(4), 223–229. DOI: 10.1080/17515831.2019.1656908.
  • Saini, A.; Pabla, B. S.; Dhami, S. S. Improvement in performance of cryogenically treated tungsten carbide tools in face milling of Ti-6Al-4V alloy. Mater. Manuf. Process. 2019, 1–10. DOI: 10.1080/10426914.2019.1615079.
  • Varghese, V.; Ramesh, M. R.; Chakradhar, D. Influence of deep cryogenic treatment on performance of cemented carbide (Wc-co) inserts during dry end milling of maraging steel. J. Manuf. Processes 2019, 37, 242–250. Doi:10.1016/j.jmapro.2018.11.030.
  • Sivalingam, V.; Suna, J.; Yanga, B.; Liua, K.; Raju, R. Machining performance and tool wear analysis on cryogenic treated insert during end milling of Ti-6Al-4V alloy. J. Manuf. Processes. 2018, 36, 188–196. DOI: 10.1016/j.jmapro.2018.10.010.
  • Varghese, V.; Ramesh, M. R.; Chakradhar, D. Experimental investigation of cryogenic end milling on maraging steel using cryogenically treated tungsten carbide-cobalt inserts. Int. J. Adv. Manuf. Technol. 2019, 105, 2001–2019. DOI: 10.1007/s00170-019-04387-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.