288
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Hybrid optimization of die design in constrained groove pressing

, ORCID Icon &
Pages 687-699 | Received 01 Aug 2019, Accepted 05 Feb 2020, Published online: 23 Feb 2020

References

  • Valiev, R. Z.; Estrin, Y.; Horita, Z.; Langdon, T. G.; Zehetbauer, M. J.; Zhu, Y. Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later. JOM. 2016, 68, 4. DOI: 10.1007/s11837-016-1820-6.
  • Shin, D. H.; Park, J. J.; Kim, Y. S.; Park, K. T. Constrained Groove Pressing and Its Application to Grain Refinement of Aluminum. Mater. Sci. Eng. A. 2002, 328(1), 98–103. DOI: 10.1016/S0921-5093(01)01665-3.
  • Gupta, A. K.; Tejveer, S. M.; Singh, S. K. Constrained Groove Pressing for Sheet Metal Processing: A Review. Prog. Mater. Sci. 2016, 84, 403–462. DOI: 10.1016/j.pmatsci.2016.09.008.
  • Wang, Z.-S.; Guan, Y.-J.; Wang, G.-C.; Zhong, C.-K. Influences of Die Structure on Constrained Groove Pressing of Commercially Pure Ni Sheets. J. Mater. Process. Technol. 2015, 215(1), 205–218. DOI: 10.1016/j.jmatprotec.2014.08.018.
  • Nazari, F.; Honarpisheh, M. Analytical Model to Estimate Force of Constrained Groove Pressing Process. J. Manuf. Process. 2018, 32, 11–19. DOI: 10.1016/j.jmapro.2018.01.015.
  • Yoon, S. C.; Quang, P.; Hong, S. I.; Kim, H. S. Die Design for Homogeneous Plastic Deformation during Equal Channel Angular Pressing. J. Mater. Process. Technol. 2007, 187, 46–50. DOI: 10.1016/j.jmatprotec.2006.11.117.
  • Kazeminezhad, M.; Hosseini, E. Optimum Groove Pressing Die Design to Achieve Desirable Severely Plastic Deformed Sheets. Mater. Des. 2010, 31(1), 94–103. DOI: 10.1016/j.matdes.2009.07.008.
  • Rahimi, F.; Eivani, A. R.; Kiani, M. Effect of Die Design Parameters on the Deformation Behavior in Pure Shear Extrusion. Mater. Des. 2015, 83, 144–153. DOI: 10.1016/j.matdes.2015.06.007.
  • Thangapandian, N.; Balasivanandha Prabu, S.; Padmanabhan, K. A.; Prabu, S. B.; Padmanabhan, K. A.; Balasivanandha Prabu, S.; Padmanabhan, K. A. Effects of Die Profile on Grain Refinement in Al-Mg Alloy Processed by Repetitive Corrugation and Straightening. Mater. Sci. Eng. A. 2016, 649, 229–238. DOI: 10.1016/j.msea.2015.09.051.
  • Moradpour, M.; Khodabakhshi, F.; Eskandari, H. Microstructure–Mechanical Property Relationship in an Al–Mg Alloy Processed by Constrained Groove Pressing-Cross Route. Mater. Sci. Technol. 2018, 0836(January), 1–15. DOI: 10.1080/02670836.2017.1416906.
  • Peng, K.; Su, L.; Shaw, L. L.; Qian, K. W. Grain Refinement and Crack Prevention in Constrained Groove Pressing of Two-Phase Cu-Zn Alloys. Scr. Mater. 2007, 56(11), 987–990. DOI: 10.1016/j.scriptamat.2007.01.043.
  • Peng, K.; Zhang, Y.; Shaw, L. L.; Qian, K. W. Microstructure Dependence of a Cu-38Zn Alloy on Processing Conditions of Constrained Groove Pressing. Acta Mater. 2009, 57(18), 5543–5553. DOI: 10.1016/j.actamat.2009.07.049.
  • Borhani, M.; Djavanroodi, F. Rubber Pad-Constrained Groove Pressing Process: Experimental and Finite Element Investigation. Mater. Sci. Eng. A. 2012, 546, 1–7. DOI: 10.1016/j.msea.2012.02.089.
  • Sajadi, A.; Ebrahimi, M.; Djavanroodi, F. Experimental and Numerical Investigation of Al Properties Fabricated by CGP Process. Mater. Sci. Eng. A. 2012, 552, 97–103. DOI: 10.1016/j.msea.2012.04.121.
  • Yadav, P. C.; Sinhal, A.; Sahu, S.; Roy, A.; Shekhar, S. Microstructural Inhomogeneity in Constrained Groove Pressed Cu-Zn Alloy Sheet. J. Mater. Eng. Perform. 2016, 25(7), 2604–2614. DOI: 10.1007/s11665-016-2142-0.
  • Kumar, S.; Venkatachalam, S.; Hariharan, K.; Kumar, D. R.; Murthy, H. Influence of Inhomogeneous Deformation on Tensile Behavior of Sheets Processed through Constrained Groove Pressing. J. Eng. Mater. Technol. 2019, 141(4), 7. DOI: 10.1115/1.4043492.
  • Hariharan, K.; Nguyen, N.-T.-T.; Chakraborti, N.; Barlat, F.; Lee, M.-G.-G. Determination of Anisotropic Yield Coefficients by a Data-Driven Multiobjective Evolutionary and Genetic Algorithm. Mater. Manuf. Process. 2015, 30(4), 403–413. DOI: 10.1080/10426914.2014.941480.
  • Kalita, K.; Shivakoti, I.; Ghadai, R. K. Optimizing Process Parameters for Laser Beam Micro-Marking Using Genetic Algorithm and Particle Swarm Optimization. Mater. Manuf. Process. 2017, 32(10), 1101–1108. DOI: 10.1080/10426914.2017.1303156.
  • Chandrasekhar, N.; Ragavendran, M.; Ravikumar, R.; Vasudevan, M. Optimization of Hybrid Laser – TIG Welding of 316LN Stainless Steel Using Genetic Algorithm. Mater. Manuf. Process. 2017, 32(10), 1094–1100. DOI: 10.1080/10426914.2017.1317793.
  • Klancnik, S.; Brezocnik, M.; Balic, J.; Karabegovic, I. Programming of CNC Milling Machines Using Particle Swarm Optimization. Mater. Manuf. Process. 2013, 28(7), 811–815. DOI: 10.1080/10426914.2012.718473.
  • Kennedy, J.; Eberhart, R. C. A Discrete Binary Version of the Particle Swarm Algorithm. 1997 IEEE Int. Conf. Syst. Man, Cybern. Comput. Cybern. Simul. 1997, 5, 4104–4108. DOI: 10.1109/ICSMC.1997.637339.
  • Halder, C.; Sitko, M.; Madej, L.; Pietrzyk, M.; Chakraborti, N. Optimised Recrystallisation Model Using Multiobjective Evolutionary and Genetic Algorithms and K-Optimality Approach. Mater. Sci. Technol. 2016, 32(4), 366–374. DOI: 10.1179/1743284715Y.0000000071.
  • Jha, R.; Pettersson, F.; Dulikravich, G. S.; Saxen, H.; Chakraborti, N. Evolutionary Design of Nickel-Based Superalloys Using Data-Driven Genetic Algorithms and Related Strategies. Mater. Manuf. Process. 2015, 30(4), 488–510. DOI: 10.1080/10426914.2014.984203.
  • Chakraborti, N.;. Critical Assessment 3: The Unique Contributions of Multi-Objective Evolutionary and Genetic Algorithms in Materials Research. Mater. Sci. Technol. 2014, 30(11), 1259–1262. DOI: 10.1179/1743284714Y.0000000578.
  • Chakraborti, N.;. Genetic Algorithms in Materials Design and Processing. Int. Mater. Rev. 2004, 49(3–4), 246–260. DOI: 10.1179/095066004225021909.
  • Halder, C.; Madej, L.; Pietrzyk, M.; Chakraborti, N. Optimization of Cellular Automata Model for the Heating of Dual-Phase Steel by Genetic Algorithm and Genetic Programming. Mater. Manuf. Process. 2015, 30(4), 552–562. DOI: 10.1080/10426914.2014.994765.
  • Shah, K.; Kumar, R.; Sahoo, S.; Pais, R. S.; Chakrabarti, D.; Chakraborti, N. Optimization of Annealing Cycle Parameters of Dual Phase and Interstitial Free Steels by Multiobjective Genetic Algorithms. Mater. Manuf. Process. 2017, 32(10), 1201–1208. DOI: 10.1080/10426914.2016.1257134.
  • Kumar, A.; Chakrabarti, D.; Chakraborti, N. Data-Driven Pareto Optimization for Microalloyed Steels Using Genetic Algorithms. Steel Res. Int. 2012, 83(2), 169–174. DOI: 10.1002/srin.201100189.
  • Hariharan, K.; Nguyen, N. T.; Chakraborti, N.; Lee, M. G.; Barlat, F. Multi-Objective Genetic Algorithm to Optimize Variable Drawbead Geometry for Tailor Welded Blanks Made of Dissimilar Steels. Steel Res. Int. 2014, 85(12), 1597–1607. DOI: 10.1002/srin.201300471.
  • Chaparro, B. M.; Thuillier, S.; Menezes, L. F.; Manach, P. Y.; Fernandes, J. V. Material Parameters Identification: Gradient-Based, Genetic and Hybrid Optimization Algorithms. Comput. Mater. Sci. 2008, 44(2), 339–346. DOI: 10.1016/j.commatsci.2008.03.028.
  • Khandey, U.; Ghosh, S.; Hariharan, K. Machining Parameters Optimization for Satisfying the Multiple Objectives in Machining of MMCs. Mater. Manuf. Process. 2017, 32(10), 1082–1093. DOI: 10.1080/10426914.2017.1279312.
  • Yoon, S. C.; Krishnaiah, A.; Chakkingal, U.; Kim, H. S.; Seop, H.; Kim, H. S. Severe Plastic Deformation and Strain Localization in Groove Pressing. Comput. Mater. Sci. 2008, 43(4), 641–645. DOI: 10.1016/j.commatsci.2008.01.007.
  • Kumar, S.; Hariharan, K.; Ravi, D.; Kumar, S. Accounting Bauschinger Effect in the Numerical Simulation of Constrained Groove Pressing Process. J. Manuf. Process. November, 2018, 2019(38), 49–62. DOI: 10.1016/j.jmapro.2018.12.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.