315
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Analysis of UOE forming process accounting for Bauschinger effect and welding

, ORCID Icon &
Pages 910-921 | Received 02 Aug 2019, Accepted 16 Mar 2020, Published online: 06 Apr 2020

References

  • Saxena, A.; Kumar, S.; Prakash, K.; Jha, B. K.; Siciliano, F.; Misra, R. D. K.; Chaudhuri, S. K. Development of API X-70 Grade Plates and Strips in SAIL. Mater. Manuf. Processes 2011, 26(1), 161–164. DOI: 10.1080/10426910903202658.
  • Sebaey, T. A.;. Design of Oil and Gas Composite Pipes for Energy Production. Energy Procedia. 2019, 146–155, 162. DOI: 10.1016/j.egypro.2019.04.016.
  • Herynk, M. D.; Kyriakides, S.; Onoufriou, A.; Yun, H. D. Effects of the UOE/UOC Pipe Manufacturing Processes on Pipe Collapse Pressure. Int. J. Of Mech. Sci. 2007, 49(5), 533553. DOI: 10.1016/j.ijmecsci.2006.10.001.
  • Yoo, J. Y.; Ahn, S. S.; Seo, D. H.; Song, W. H.; Kang, K. B. New Development of High Grade X80 to X120 Pipeline Steels. Mater. Manuf. Processes. 2011, 26(1), 154160. DOI: 10.1080/10426910903202534.
  • Zou, T.; Li, D.; Wu, G.; Peng, Y. Yield Strength Development from High Strength Steel Plate to UOE Pipe. Mater. Design 2016, 89, 11071122. DOI: 10.1016/j.matdes.2015.10.095.
  • Moco, R. F.; Cavalcante, F. G.; Donato, G. H. B. Effects of Manufacturing Plastic Prestrains Found on Calendered and UOE Pipes and Pressure Vessels on Structural Integrity Assessments regarding Fatigue Crack Growth and LBB. Procedia Eng. 2018, 13, 19151923. DOI: 10.1016/j.prostr.2018.12.270.
  • Yi, J.; Kang, S. C.; Koh, H. M.; Choo, J. F. Simulation-Based Tracking of UOE Pipe Yield Strength considering Various Thickness-to-Diameter Ratios. In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, 2018; pp. V003T02A087V003T02A087. DOI: 10.1115/OMAE2018-77786.
  • Yi, J.; Kang, S. C.; Koh, H. M.; Choo, J. F. Yield Strength Prediction of UOE Pipes: From Forming to Flattening. In Int. Soc. Offshore Polar Eng. 2018, 28, 206211. DOI: 10.17736/ijope.2018.oa17.
  • Sowerby, R.; Tomita, Y. On the Bauschinger Effect and Its Influence on UOE Pipe Making Process. Int. J. Of Mech. Sci. 1977, 19(6), 351359. DOI: 10.1016/0020-7403(77)90088-1.
  • Kassner, M.; Geantil, P.; Levine, L.; Larson, B. Backstress, the Bauschinger Effect and Cyclic Deformation. Mater. Sci. Forum. 2009, 604–605, 3951. DOI: 10.4028/www.scientific.net/MSF.604-605.39.
  • Saleh, A. A.; Clausen, B.; Brown, D. W.; Pereloma, E. V.; Davies, C. H. J.; Tome, C. N.; Gazder, A. A. On the Feasibility of Partial Slip Reversal and De-twinning during the Cyclic Loading of TWIP Steel. Mater. Lett. 2016, 182, 294297. DOI: 10.1016/j.matlet.2016.07.005.
  • Hu, J.; Chen, B.; Smith, D. J.; Flewitt, P. E.; Cocks, A. C. On the Evaluation of the Bauschinger Effect in an Austenitic Stainless steel-The Role of Multi-Scale Residual Stresses. Int. J. Plasticity 2016, 84, 203223. DOI: 10.1016/j.ijplas.2016.05.009.
  • Wang, Y.; Tomota, Y.; Harjo, S.; Gong, W.; Ohmura, T. In-situ Neutron Diffraction during Tension-Compression Cyclic Deformation of a Pearlite Steel. Mat. Sci. Eng. A. 2016, 676, 522530. DOI: 10.1016/j.msea.2016.08.122.
  • Ratnapuli, R.; Rodrigues, E. Bauschinger Effect in API X60 Linepipe Steels. Metals Tech. 1982, 9(1), 440445. DOI: 10.1179/030716982803286313.
  • Kostryzhev, A. G.; Strangwood, M.; Davis, C. L. Mechanical Property Development during UOE Forming of Large Diameter Pipeline Steels. Mater. Manuf. Processes. 2010, 25, 4147. DOI: 10.1080/10426910903202542.
  • Kostryzhev, A. G.; Strangwood, M.; Davis, C. L. Bauschinger Effect in Microalloyed Steels: Part I. Dependence on Dislocation-Particle Interaction. Metall. Mater. Trans. A. 2010, 41(6), 13991408. DOI: 10.1007/s11661-010-0196-4.
  • Kostryzhev, A. G.; Strangwood, M.; Davis, C. L. Bauschinger Effect in Microalloyed Steels: Part II. Influence of Work Softening on Strength Development during UOE Line-Pipe Forming. Metall. Mater. Trans. A. 2011, 42(10), 31703177. DOI: 10.1007/s11661-011-0732-x.
  • Wiskel, J.; Rieder, M.; Henein, H. Kinematic Behaviour of Microalloyed Steels under Complex Forming Conditions. Can. Metall. Quart. 2014, 43(1), 125136. DOI: 10.1179/cmq.2004.43.1.125.
  • Ormandy, J. P.; Strangwood, M.; Davis, C. L. Effect of Microalloying Additions on Steel Plate to Pipe Property Variations during UOE Linepipe Processing. Mater. Sci. Tech-Lond. 2003, 19(5), 595601. DOI: 10.1179/026708303225010795.
  • Sohn, S. S.; Han, S. Y.; Shin, S. Y.; Bae, J. H.; Lee, S. Effects of Microstructure and Prestrain on Bauschinger Effect in API X70 and X80 Linepipe Steels. Met. Mater. Int. 2013, 19(3), 423431. DOI: 10.1007/s12540-013-3007-9.
  • Han, S. Y.; Sohn, S. S.; Shin, S. Y.; Bae, J. H.; Kim, H. S.; Lee, S. Effects of Microstructure and Yield Ratio on Strain Hardening and Bauschinger Effect in Two API X80 Linepipe Steels. Mat. Sci. Eng. A. 2012, 551, 192199. DOI: 10.1016/j.msea.2012.05.007.
  • Uko, D.; Sowerby, R.; Embury, J. D. Bauschinger Effect in Structural Steels and Role in Fabrication of Line Pipe: Part 2 Empirical Analysis of Influence of Bauschinger Effect in Pipe-Forming Operation. Met. Technol. 1980, 7(1), 368371. DOI: 10.1179/030716980803286919.
  • Ren, Q.; Zou, T. X.; Ji, Z. C.; Li, D. Y.; Peng, Y. H.; Han, J. Z.; Wang, X. X.; Li, X. W. Numerical Simulation and Parametric Study of UOE Pipe Forming Process. AIP Conf. Proc. 2013, 1532, 538546. DOI: doi.10.1063/1.4806873.
  • Ren, Q.; Zou, T.; Li, D.; Tang, D.; Peng, Y. Numerical Study on the X80 UOE Pipe Forming Process. J. Mater. Process. Technol. 2015, 215, 264277. DOI: 10.1016/j.jmatprotec.2014.08.013.
  • Chatzopoulou, G.; Karamanos, S. A.; Varelis, G. E. Effects of UOE Manufacturing Process on Pressurized Bending Response of Offshore Pipes. In ASME Proceedings of the 2014 10th International Pipeline Conference, 2014; p V003T07A039. DOI: 10.1115/IPC2014-33321.
  • Timms, C.; Mantovano, L.; Ernst, H. A.; Toscano, R.; DeGeer, D.; Swanek, D.; de Souza, M.; Chad, L. C. The Influence of the UOE Forming Process on Material Properties and Collapse of Deepwater Linepipe. In ASME Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering, Pipeline and Riser Technology, Hawaii, USA, Vol. 3, p. 875884. DOI: 10.1115/OMAE2009-80179.
  • Kyriakides, S.; Herynk, M. D.; Yun, H. Optimization of UOE Pipe Manufacturing Process for Improved Collapse Performance under External Pressure. ASME Proceedings of the 2006 International Pipeline Conference; p. 355362 DOI: 10.1115/IPC2006-10614.
  • Raffo, J.; Toscano, R. G.; Mantovano, L.; Dvorkin, E. N. Numerical Model of UOE Steel Pipes: Forming Process and Structural Behavior. Mecanica Computacional XXVI. 2007, XXVI, 317333.
  • Zhao, Y.; Ren, Q.; Zou, T. X.; Li, D. Y.; Peng, Y. H. Analysis and Simulation of the UOE Pipe Production Processing by Finite Element Method. Mater. Scie. Forum. 2013, 749, 437443. DOI: 10.4028/www.scientific.net/MSF.749.437.
  • Yeda, L.; Qiang, M.; Bing, Z.; Yuqiang, Z.; Hao, L. Study on Forming and Laying Process of High Strength Pipeline Steel. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 383, 012028. DOI: 10.1088/1757-899X/383/1/012028.
  • Chatzopoulou, G.; Karamanos, S. A.; Varelis, G. E. Finite Element Analysis of UOE Manufacturing Process and Its Effect on Mechanical Behavior of Offshore Pipes. Int. J. Sol. Str. 2016, 83, 1327. DOI: 10.1016/j.ijsolstr.2015.12.020.
  • Kostryzhev, A.; Strangwood, M.; Davis, C. L. Influence of Microalloying Precipitates on Bauschinger Effect during UOE Forming of Line Pipe Steels. Mater. Tech. 2007, 22(3), 166172. DOI: doi.10.1179/175355507X236650.
  • Ren, Q.; Zou, T. X.; Li, D. Y. Effects of Hardening Models on CUO Forming and Springback Simulation of High Strength Line Pipes. Mater. Sci. Forum. 2015, 817, 813. DOI: 10.4028/www.scientific.net/MSF.817.8.
  • Chaboche, J. L.;. Time-Independent Constitutive Theories for Cyclic Plasticity. Int. J. Plasticity. 1986, 2(2), 149188. DOI: 10.1016/0749-6419(86)90010-0.
  • Hosseini, E.; Holdsworth, S.; Kuhn, I.; Mazza, E. Temperature Dependent Representation for Chaboche Kinematic Hardening Model. Mater. High Temp. 2015, 32(4), 404412. DOI: 10.1179/1878641314Y.0000000036.
  • Zhou, C.; Chen, Z.; Lee, J.; Lee, M.; Implementation, W. R. Application of a Temperature-Dependent Chaboche Model. Int. J. Plasticity. 2015, 75, 121140. DOI: 10.1016/j.ijplas.2015.03.002.
  • Zou, T.; Wu, G.; Li, D.; Ren, Q.; Xin, J.; Peng, Y. A Numerical Method for Predicting O-forming Gap in UOE Pipe Manufacturing. Int. J. Mech. Sci. 2015, 98, 3958. DOI: 10.1016/j.ijmecsci.2015.04.006.
  • Adeeb, S.; Zhou, J.; Horsley, D. Investigating the Effect of UOE Forming Process on the Buckling of Line Pipes Using Finite Element Modeling. In ASME Proceedings of the 2006 International Pipeline Conference; p. 169174. DOI: 10.1115/IPC2006-10175.
  • Kang, S.; Speer, J.; Van Tyne, C.; Weeks, T. Effect of Pipe Flattening in API X65 Linepipe Steels Having Bainite Vs. Ferrite/Pearlite Microstructures. Metals. 2018, 8(5), 354. DOI: 10.3390/met8050354.
  • Wen, S.; Hilton, P.; Farrugia, D. Finite Element Modelling of a Submerged Arc Welding Process. J. Mater. Process. Technol. 2001, 119(1–3), 203209. DOI: 10.1016/S0924-0136(01)00945-1.
  • Ferreira, D.; Alves, A.; Cruz Neto, R.; Martins, T.; Brandi, S. A New Approach to Simulate HSLA Steel Multipass Welding through Distributed Point Heat Sources Model. Metals. 2018, 8(11), 951. DOI: 10.3390/met8110951.
  • Yan, C.; Liu, C.; Yan, B. 3D Modeling of the Hydrogen Distribution in X80 Pipeline Steel Welded Joints. Comp. Mater. Sci. 2014, 83, 158163. DOI: 10.1016/j.commatsci.2013.11.007.
  • Nemat-Nasser, S.; Guo, W. Thermomechanical Response of HSLA-65 Steel Plates: Experiments and Modeling. Mech. Mater. 2005, 37, 379–405. DOI: 10.1016/j.mechmat.2003.08.017.
  • DebRoy, T.; Wei, H. L.; Zuback, J. S.; Mukherjee, T.; Elmer, J. W.; Milewski, J. O.; Beese, A. M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive Manufacturing of Metallic Components- Process, Structure and Properties. Prog.Mater.Sci. 2018, 92, 112–224. DOI: 10.1016/J.PMATSCI.2017.10.001.
  • Talebi, H.; Frond, M.; Dos Santos, J. F.; Klusemann, B. Thermomechanical Simulation of Friction Stir Welding of Aluminum Using an Adaptive Element-Free Galerkin Method. Proc.Appl.math.Mech. 2017, 17, 473–474. DOI: 10.1002/pamm.201710206.
  • Biswas, P.; Mandal, N. R. Thermomechanical Finite Element Analysis and Experimental Investigation of Single-pass Single-sided Submerged Arc Welding of C-Mn Steel Plates. Proc. IMechE. Part B: J. Eng. Manuf. 2010, 224, 627–639. DOI: 10.1243/09544054JEM1624.
  • Mukherjee, T.; Zhang, W.; DebRoy, T. An Improved Prediction of Residual Stresses and Distortion in Additive Manufacturing. Comput. Mater. Sci. 2017, 126, 36072. DOI: 10.1016/J.COMMATSCI.2016.10.003.
  • Ye, R.; Smugeresky, J. E.; Zheng, B.; Zhou, Y.; Lavernia, E. J. Numerical Modeling of the Thermal Behavior during the LENS Process. Mat. Sci. Eng. A-Struct. 2006, 428, 4753. DOI: 10.1016/J.MSEA.2006.04.079.
  • Yeh, M.; Kyriakides, S. On the Collapse of Inelastic Thick-Walled Tubes under External Pressure. J. Energy Resour-ASME. 1986, 108(1), 3547. DOI: 10.1115/1.3231239.
  • Yeh, M.; Kyriakides, S. Collapse of Deepwater Pipelines. J. Ener. Reso. Tech. 1986, 110(1), 111. DOI: 10.4043/5215-MS.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.