206
Views
4
CrossRef citations to date
0
Altmetric
Research Article

One-step regulating the microstructure in physical foaming process of polypropylene

, &
Pages 935-939 | Received 29 Dec 2019, Accepted 22 Mar 2020, Published online: 01 Apr 2020

References

  • Wang, L.; Hikima, Y.; Ohshima, M.; Yusa, A.; Yamamoto, S.; Goto, H. Unusual Fabrication of Lightweight Injection-Molded Polypropylene Foams by Using Air as the Novel Foaming Agent. Ind. Eng. Chem. Res. 2018, 57(10), 3800–3804. DOI: 10.1021/acs.iecr.7b05331.
  • Song, Y.; Gandhi, U.; Sekito, T.; Vaidya, U. K.; Vallury, S.; Yang, A.; Osswald, T. CAE Method for Compression Molding of Carbon Fiber-Reinforced Thermoplastic Composite Using Bulk Materials. Compos. Part A Appl. Sci. Manuf. 2018, 114, 388–397. DOI: 10.1016/j.compositesa.2018.09.002.
  • Xu, B.; Yin, S.; Wang, Y.; Li, H.; Zhang, B.; Ritchie, R. O. Long-Fiber Reinforced Thermoplastic Composite Lattice Structures: Fabrication and Compressive Properties. Compos. Part A Appl. Sci. Manuf. 2017, 97, 41–50. DOI: 10.1016/j.compositesa.2017.03.002.
  • Wang, L.; Hikima, Y.; Ohshima, M.; Yusa, A.; Yamamoto, S.; Goto, H. Development of a Simplified Foam Injection Molding Technique and Its Application to the Production of High Void Fraction Polypropylene Foams. Ind. Eng. Chem. Res. 2017, 56(46), 13734–13742. DOI: 10.1021/acs.iecr.7b03382.
  • Zhao, J.; Zhao, Q.; Wang, G.; Wang, C.; Park, C. B. Injection Molded Strong Polypropylene Composite Foam Reinforced with Rubber and Talc. Macromol. Mater. Eng. 2019, 1900630. DOI: 10.1002/mame.201900630.
  • Lv, Z.; Zhao, N.; Wu, Z.; Zhu, C.; Li, Q. Fabrication of Novel Open-Cell Foams of Poly(ϵ-Caprolactone)/Poly(Lactic Acid) Blends for Tissue-Engineering Scaffolds. Ind. Eng. Chem. Res. 2018, 57(39), 12951–12958. DOI: 10.1021/acs.iecr.8b02233.
  • Qiang, W.; Zhao, L.; Liu, T.; Liu, Z.; Gao, X.; Hu, D. Systematic Study of Alcohols Based Co-Blowing Agents for Polystyrene Foaming in Supercritical CO2: Toward the High Efficiency of Foaming Process and Foam Structure Optimization. J. Supercrit. Fluids. 2020, 158. DOI: 10.1016/j.supflu.2019.104718.
  • Gómez-Monterde, J.; Sánchez-Soto, M.; Maspoch, M. L. Microcellular PP/GF Composites: Morphological, Mechanical and Fracture Characterization. Compos. Part A Appl. Sci. Manuf. 2018, 104, 1–13. DOI: 10.1016/j.compositesa.2017.10.014.
  • Colton, J. S. The Nucleation of Microcellular Foams in Semi-Crystalline Thermoplastics. Mater. Manuf. Process. 1989, 4(2), 253–262. DOI: 10.1080/10426918908956288.
  • Hu, D.; Yan, L.; Liu, T.; Xu, Z.; Zhao, L. Solubility and Diffusion Behavior of Compressed CO 2 in Polyurethane Oligomer. J. Appl. Polym. Sci. 2019, 136(8), 47100. DOI: 10.1002/app.47100.
  • Nofar, M.; Guo, Y.; Park, C. B. Double Crystal Melting Peak Generation for Expanded Polypropylene Bead Foam Manufacturing. Ind. Eng. Chem. Res. 2013, 52(6), 2297–2303. DOI: 10.1021/ie302625e.
  • Xu, L. Q.; Huang, H. X. Formation Mechanism and Tuning for Bi-Modal Cell Structure in Polystyrene Foams by Synergistic Effect of Temperature Rising and Depressurization with Supercritical CO2. J. Supercrit. Fluids. 2016, 109, 177–185. DOI: 10.1016/j.supflu.2015.07.020.
  • Wang, J.; Zhang, L.; Bao, J. Biao. Supercritical CO2 Assisted Preparation of Open-Cell Foams of Linear Low-Density Polyethylene and Linear Low-Density Polyethylene/Carbon Nanotube Composites. Chin. J. Polym. Sci. 2016, 34(7), 889–900. DOI: 10.1007/s10118-016-1806-4.
  • Wang, G.; Wang, L.; Mark, L. H.; Shaayegan, V.; Wang, G.; Li, H.; Zhao, G.; Park, C. B. Ultralow-Threshold and Lightweight Biodegradable Porous PLA/MWCNT with Segregated Conductive Networks for High-Performance Thermal Insulation and Electromagnetic Interference Shielding Applications. ACS Appl. Mater. Interfaces. 2018, 10(1), 1195–1203. DOI: 10.1021/acsami.7b14111.
  • Gedler, G.; Antunes, M.; Velasco, J. I.; Ozisik, R. Enhanced Electromagnetic Interference Shielding Effectiveness of Polycarbonate/Graphene Nanocomposites Foamed via 1-Step Supercritical Carbon Dioxide Process. Mater. Des. 2016, 90, 906–914. DOI: 10.1016/j.matdes.2015.11.021.
  • Yuan, H.; Xiong, Y.; Shen, Q.; Luo, G.; Zhou, D.; Liu, L. Synthesis and Electromagnetic Absorbing Performances of CNTs/PMMA Laminated Nanocomposite Foams in X-Band. Compos. Part A Appl. Sci. Manuf. 2018, 107(January), 334–341. DOI: 10.1016/j.compositesa.2018.01.024.
  • Zhao, B.; Zhao, C.; Li, R.; Hamidinejad, S. M.; Park, C. B. Flexible, Ultrathin, and High-Efficiency Electromagnetic Shielding Properties of Poly(Vinylidene Fluoride)/Carbon Composite Films. ACS Appl. Mater. Interfaces. 2017, 9(24), 20873–20884. DOI: 10.1021/acsami.7b04935.
  • Tang, W.; Liao, X.; Zhang, Y.; Li, J.; Wang, G.; Li, G. Mechanical–Microstructure Relationship and Cellular Failure Mechanism of Silicone Rubber Foam by the Cell Microstructure Designed in Supercritical CO 2. J. Phys. Chem. C. 2019, 123(44), 26947–26956. DOI: 10.1021/acs.jpcc.9b06992.
  • Jiang, M.; Li, H.; Fang, D.; Liu, L.; Tai, Q.; Li, L.; Dong, L.; Xie, H.; Xiong, C. Structure-Property Relationship in Injection-Molded Polypropylene/Clay Composite Foams. Mater. Manuf. Process. 2014, 29(2), 160–165. DOI: 10.1080/10426914.2013.864399.
  • Wang, K.; Pang, Y.; Wu, F.; Zhai, W.; Zheng, W. Cell Nucleation in Dominating Formation of Bimodal Cell Structure in Polypropylene/Polystyrene Blend Foams Prepared via Continuous Extrusion with Supercritical CO2. J. Supercrit. Fluids. 2016, 110, 65–74. DOI: 10.1016/J.SUPFLU.2015.12.012.
  • Chen, Y.; Weng, C.; Wang, Z.; Maertens, T.; Fan, P.; Chen, F.; Zhong, M.; Tan, J.; Yang, J. Preparation of Polymeric Foams with Bimodal Cell Size: An Application of Heterogeneous Nucleation Effect of Nanofillers. J. Supercrit. Fluids. 2019, 147, 107–115. DOI: 10.1016/J.SUPFLU.2019.02.015.
  • Zhang, C.; Zhu, B.; Li, D.; Lee, L. J. Extruded Polystyrene Foams with Bimodal Cell Morphology. Polymer (Guildf). 2012, 53(12), 2435–2442. DOI: 10.1016/j.polymer.2012.04.006.
  • Ma, Z.; Zhang, G.; Yang, Q.; Shi, X.; Shi, A.; Fabrication of Microcellular Polycarbonate Foams with Unimodal or Bimodal Cell-Size Distributions Using Supercritical Carbon Dioxide as a Blowing Agent. J. Cell. Plast. 2014, 50(1), 55–79. DOI:10.1177/0021955X13503849.
  • Binti Sharudin, R. W.; Ohshima, M. CO2-Induced Mechanical Reinforcement of Polyolefin-Based Nanocellular Foams. Macromol. Mater. Eng. 2011, 296(11), 1046–1054. http://10.1002/mame.201100085.
  • Xu, L. Q.; Huang, H. X. Foaming of Poly(Lactic Acid) Using Supercritical Carbon Dioxide as Foaming Agent: Influence of Crystallinity and Spherulite Size on Cell Structure and Expansion Ratio. Ind. Eng. Chem. Res. 2014, 53(6), 2277–2286. DOI: 10.1021/ie403594t.
  • Jiang, X. L.; Liu, T.; Xu, Z. M.; Zhao, L.; Hu, G. H.; Yuan, W. K. Effects of Crystal Structure on the Foaming of Isotactic Polypropylene Using Supercritical Carbon Dioxide as a Foaming Agent. J. Supercrit. Fluids. 2009, 48(2), 167–175. DOI: 10.1016/j.supflu.2008.10.006.
  • Takada, M.; Tanigaki, M.; Ohshima, M. Effects of CO2 on Crystallization Kinetics of Polypropylene. Polym. Eng. Sci. 2001, 41(11), 1938–1946. DOI: 10.1002/pen.10890.
  • Okamoto, M.; Nam, P. H.; Maiti, P.; Kotaka, T.; Nakayama, T.; Takada, M.; Ohshima, M.; Usuki, A.; Hasegawa, N.; Okamoto, H. Biaxial Flow-Induced Alignment of Silicate Layers in Polypropylene/Clay Nanocomposite Foam. Nano Lett. 2001, 1(9), 503–505. DOI: 10.1021/nl010051+.
  • Miyamoto, R.; Yasuhara, S.; Shikuma, H.; Ohshima, M. Preparation of Micro/Nanocellular Polypropylene Foam with Crystal Nucleating Agents. Polym. Eng. Sci. 2014, 54(9), 2075–2085. DOI: 10.1002/pen.23758.
  • Nam, G. J.; Yoo, J. H.; Lee, J. W. Effect of Long-Chain Branches of Polypropylene on Rheological Properties and Foam-Extrusion Performances. J. Appl. Polym. Sci. 2005, 96(5), 1793–1800. DOI: 10.1002/app.21619.
  • Taki, K.; Nakayama, T.; Yatsuzuka, T.; Ohshima, M.; Visual Observations of Batch and Continuous Foaming Processes. J. Cell. Plast. 2003, 39(2), 155–169. DOI:10.1177/0021955X03039002005.
  • Nemoto, T.; Takagi, J.; Ohshima, M. Nanoscale Cellular Foams from a Poly(Propylene)-Rubber Blend. Macromol. Mater. Eng. 2008, 293(12), 991–998. DOI: 10.1002/mame.200800184.
  • Gong, P.; Wang, G.; Tran, M.-P.; Buahom, P.; Zhai, S.; Li, G.; Park, C. B. Advanced Bimodal Polystyrene/Multi-Walled Carbon Nanotube Nanocomposite Foams for Thermal Insulation. Carbon. 2017, 120, 1–10. DOI: 10.1016/J.CARBON.2017.05.029.
  • Di Lorenzo, M. L.; Righetti, M. C.; Cocca, M.; Wunderlich, B. Coupling between Crystal Melting and Rigid Amorphous Fraction Mobilization in Poly(Ethylene Terephthalate). Macromolecules. 2010, 43(18), 7689–7694. DOI: 10.1021/ma101035h.
  • Zia, Q.; Mileva, D.; Androsch, R. Rigid Amorphous Fraction in Isotactic Polypropylene. Macromolecules. 2008, 41(21), 8095–8102. DOI: 10.1021/ma801455m.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.