690
Views
31
CrossRef citations to date
0
Altmetric
Review

Review on effect of Ti-alloy processing techniques on surface-integrity for biomedical application

ORCID Icon &
Pages 869-892 | Received 12 Dec 2019, Accepted 24 Mar 2020, Published online: 21 Apr 2020

References

  • Babik, O.; Czan, A.; Holubjak, J.; Kamenik, R.; Pilc, J.; Identification of Surface Characteristics Created by Miniature Machining of Dental Implants Based Materials Made of Titanium. TRANSCOM 2017: International scientific conference on sustainable, modern and safe transport. Slovakia, 2017, 192, 1016–1021.
  • Gosavi, S.; Gosavi, S.; Alla, R. Titanium - A Miracle Metal in Dentistry. Trends in Biomaterials and Artificial Organs. 2013, 27(1), 42–46.
  • Rostlund, T.; Carlsson, L.; Albrektsson, B.; Albrektsson, T. Osseointegrated Knee Prostheses: An Experimental Study in Rabbits. Scandinavian Journal of Plastic and Reconstructive Surgery. 1989, 23(1), 43–46. DOI: 10.3109/02844318909067507.
  • Ramsden, J. J.; Allen, D. M.; Stephenson, D. J.; Alcock, J. R.; Peggs, G. N.; Fuller, G. N.; Goch, G. The Design and Manufacture of Biomedical Surfaces. CIRP Annals. 2007, 56(2), 687–711. DOI: 10.1016/j.cirp.2007.10.001.
  • Li, Y.; Yang, C.; Zhao, H.; Qu, S.; Li, X.; Li,; Li, Y. Review New Developments of Ti-Based Alloys for Biomedical Applications. Materials. 2014, 7(3), 1709–1800. DOI: 10.3390/ma7031709.
  • Burstone, C. J.; Jon Goldberg, A. Beta Titanium: A New Orthodontic Alloy. Am. J. Orthodontics. 1980, 77(2), 121–132. DOI: 10.1016/0002-9416(80)90001-9.
  • Calin, M.; Arne Helth, A.; Moreno, J. J.; Bonisch, M.; Brackmann, V.; Giebeler, L.; Gemming, T.; Lekka, C. E.; Gebert, A.; Schnettler, R.; et al. Elastic Softening of β-type Ti–Nb Alloys by Indium (In) Additions. Journal of the Mechanical Behavior of Biomedical Materials. 2014, 39, 162–174. DOI: 10.1016/j.jmbbm.2014.07.010.
  • Eisenbarth, E.; Velten, M.; Muller, D.; Thull, J.; Breme, R. Biocompatibility of β-Stabilizing Elements of Titanium Alloys. Biomaterials. 2004, 25(26), 5705–5713. DOI: 10.1016/j.biomaterials.2004.01.021.
  • Manjaiah, M.; Laubscher, R. F. A Review of the Surface Modifications of Titanium Alloys for Biomedical Applications. Mater. Technol. 2017, 51(2), 181–193.
  • Evans, C. J.; Bryan, J. B. Structured, TexturedorEngineeredSurfaces. Ann. ClRP. 1999, 48(2), 541–556. DOI: 10.1016/S0007-8506(07)63233-8.
  • Bruzzone, A. A. G.; Costa, H. L.; Lonardo, P. M.; Lucca, D. A. Advances in Engineered Surfaces for Functional Performance. CIRP Annals. 2008, 57(2), 750–769. DOI: 10.1016/j.cirp.2008.09.003.
  • Wennerberg, A.; Albrektsson, T. Effects of Titanium Surface Topography on Bone Integration: A Systematic Review. Clin. Oral Implants Res. 2009, 20, 172–184. DOI: 10.1111/j.1600-0501.2009.01775.x.
  • Lauro, C. H.; Brandao, L. C.; Panzera, T. H.; Davim, J. P. Surface Integrity In The Micromachining: A Review. Rev. Adv. Mater. Sci. 2015, 40, 227–234.
  • Sylwia, S.;. Surface Modifications of Ti and Its Alloys. Adv. Mater. Sci. 2010, 10(1), 29–42.
  • Jawahir, I. S.; Brinksmeier, E.; M’Saoubi, R.; Aspinwall, D. K.; Outeiro, J. C.; Meyer, D.; Umbrello, D.; Jayal, A. D. Surface Integrity in Material Removal Processes: Recent Advances. CIRP Annals. 2011, 60(2), 603–626. DOI: 10.1016/j.cirp.2011.05.002.
  • Wang, K.;. The Use of Titanium for Medical Applications in the USA. Mater. Sci. Eng. 1996, A213, I34- I37.
  • Cui, W. F.; Jin, Z.; Guo, A. H.; Zhou, L. High Temperature Deformation Behavior of Α+β-Type Biomedical Titanium Alloy Ti–6Al–7Nb. Materials Science and Engineering: A. 2009, 499(1–2), 252–256. DOI: 10.1016/j.msea.2007.11.109.
  • Lee, W.-S.; Chen, C.-W. High Temperature Impact Properties and Dislocation Substructure of Ti–6Al–7Nb Biomedical Alloy. Materials Science and Engineering: A. 2013, 576, 91–100. DOI: 10.1016/j.msea.2013.03.088.
  • Luo, Y.; Yang, L.; Tian, M.; Application of Biomedical- Grade Titanium Alloys in Trabecular Bone and Artificial Joints. Woodhead Publishing Limited.2013.DOI:10.1533/9780857092205.181.
  • Albrektsson, T.; Jacobsson, M. Bone-Metal Interface in Osseointegration. J. Prosthetic Dent. 1987, 57(5), 597–607. DOI: 10.1016/0022-3913(87)90344-1.
  • Frosch, K.-H.; Sturmer, K. M. Metallic Biomaterials in Skeletal Repair. Eur. J. Trauma. 2006, 32(2), 149–159. DOI: 10.1007/s00068-006-6041-1.
  • Bombac, D.; Brojan, M.; Fajfar, P.; Kosel, F.; Turk, R. Review of Materials in Medical Applications. RMZ – Mater. Geoenviron. 2007, 54, 471–499.
  • Golosova, O. A.; Ivanov, M. B.; Kolobov, Y. R.; Vershinina, T. N. Structure and Properties of Low Modulus Titanium Alloy Ti–26Nb–7Mo–12Zr. Mater. Sci. Technol. 2013, 29(2), 204–209. DOI: 10.1179/1743284712Y.0000000128.
  • Kalebo, P.; Buch, F.; Albrektsson, T. Bone Formation Rate in Osseointegrated Titanium Implants:Influence of Locally Applied Haemostasis, Peripheral Blood, Autologous Bone Marrow and Fibrin Adhesive System (FAS). Scandinavian Journal of Plastic and Reconstructive Surgery. 1988, 22(1), 53–60. DOI: 10.3109/02844318809097935.
  • Tanaka, N.; Ichinose, S.; Kimijima, Y.; Mimura, M. Investigation of Titanium Leak to Bone Tissue Surrounding Dental Titanium Implant: Electron Microscopic Findings and Analysis by Electron Diffraction. Med. Electron. Microsc. 2000, 33(2), 96–101. DOI: 10.1007/s007950070008.
  • Guillemot, F.; Prima, F.; Bareille, R.; Gordin, D.; Gloriant, T.; Porte-Durrieu, M. C.; Ansel, D.; Baquey, C. H. Design of New Titanium Alloys for Orthopaedic Applications. Med. Biol. Eng. Comput. 2004, 42(1), 137–141. DOI: 10.1007/BF02351023.
  • Mohammadi, S.; Esposito, M.; Wictorin, L.; Aronsson, B.-O.; Thomsen, P. Bone Response to Machined Cast Titanium Implants. J. Mater. Sci. 2001, 36(8), 1987–1993. DOI: 10.1023/A:1017518629057.
  • Tengvall, P.; Askendal, A.; Elwing, H.; Lundstrom, I. A Model for the Interaction between Titanium and Living Systems. Biofouling. 1991, 4(1–3), 219–223. DOI: 10.1080/08927019109378212.
  • Lijian, Z.; Ti-Sheng, C.; Wei, W.; Lei, C. Study of Commercially Pure Titanium Implants Bone Integration Mechanism. Eur. J. Plastic Surg. 2000, 23(6), 301–304. DOI: 10.1007/s002380000165.
  • Sennerby, L.; Thomsen, P.; Ericson, L. E. Early Tissue Response to Titanium Implants Inserted in Rabbit Cortical Bone. J. Mater. Sci.: Mater. Med. 1993, 4, 240–250.
  • Veiga, C.; Davim, J. P.; Loureiro, A. J. R. Properties and Applications of Titanium Alloys: A Brief Review. Rev. Adv. Mater. Sci. 2012, 32, 113–148.
  • Van Noort, R.;. Review Titanium: The Implant Material of Today. J. Mater. Sci. 1987, 22(11), 3801–3811. DOI: 10.1007/BF01133326.
  • Hussein, A. H.; Gepreel, M. A.-H.; Gouda, M. K.; Hefnawy, A. M.; Kandil, S. H. Biocompatibility of New Ti–Nb–Ta Base Alloys. Materials Science and Engineering: C. 2016, 61, 574–578. DOI: 10.1016/j.msec.2015.12.071.
  • Liu, X.; Chu, P. K.; Ding, C. Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications. Materials Science and Engineering: R: Reports. 2004, 47(3–4), 49–121. DOI: 10.1016/j.mser.2004.11.001.
  • Rabiei, A.;. Recent Developments and the Future of Bone Mimicking: Materials for Use in Biomedical Implants. Expert Rev. Med. Devices. 2010, 7(6), 727–729. DOI: 10.1586/erd.10.51.
  • Pettersson, M.; Pettersson, J.; Thoren, M. M.; Johansson, A. Release of Titanium after Insertion of Dental Implants with Different Surface Characteristics – An Ex Vivo Animal Study. Acta Biomater. 2017, 3(1), 63–73.
  • Niinomi, M.;. Recent Research and Development in Titanium Alloys for Biomedical Applications and Healthcare Goods. Sci. Technol. Adv. Mater. 2003, 4(5), 445–454. DOI: 10.1016/j.stam.2003.09.002.
  • Ozdemir, Z.; Basim, G. B. Effect of Chemical Mechanical Polishing on Surface Nature of Titanium Implants FT-IR and Wettability Data of Titanium Implants Surface after Chemical Mechanical Polishing Implementation. Data Brief. 2017, 10, 20–25. DOI: 10.1016/j.dib.2016.11.065.
  • Bai, Y.; Deng, Y.; Zheng, Y.; Li, Y.; Zhang, R.; Lv, Y.; Zhao, Q.; Wei, S. Characterization, Corrosion Behavior, Cellular Response and in Vivo Bone Tissue Compatibility of Titanium–niobium Alloy with Low Young’s Modulus. Materials Science and Engineering: C. 2016, 59, 565–576. DOI: 10.1016/j.msec.2015.10.062.
  • Elmay, W.; Patoor, E.; Bolle, B.; Gloriant, T.; Prima, F.; Eberhardt, A.; Laheurte, P. Optimisation of Mechanical Properties of Ti–Nb Binary Alloys for Biomedical Applications. Comput. Methods Biomech. Biomed. Eng. 2011, 14(sup1), 119–120.
  • Zhu, Y.; Wang, L.; Wang, M.; Liu, Z.; Qin, J.; Zhang, D.; Lu, W. Superelastic and Shape Memory Properties of Ti X Nb3Zr2Ta Alloys. J. Mech. Behav. Biomed. Mater. 2012, 12, 151–159. DOI: 10.1016/j.jmbbm.2012.02.010.
  • Hanumantharaju, H. G.; Shivanand, H. K. Strength Analysis & Comparison of SS 316 L, Ti-6AI-4V & Ti-35Nb-7Zr-5Ta Used as Orthopaedic Implant Materials by FEA. ICBEE. 2010, 101–105.
  • Thompson, S. A.;. An Overview of Nickel-titanium Alloys Used in Dentistry. Int. Endodontic J. 2000, 33(4), 297–310. DOI: 10.1046/j.1365-2591.2000.00339.x.
  • Chrzanowski, W.; Neel, E. A. A.; Armitage, D. A.; Knowles, J. C. Effect of Surface Treatment on the Bioactivity of Nickel–titanium. Acta Biomater. 2008, 4(6), 1969–1984. DOI: 10.1016/j.actbio.2008.05.010.
  • Hanawa, T.;. Overview of Metals and Applications. In Niinomi, M, Ed.;Metals for Biomedical Devices; Woodhead Publishing Limited: China, 2010; pp 3–24.
  • Feofilov, R. N.; Chirkov, V. K.; Levin, M. V.; Reviews, Application of Titanium Alloysin Medical Instruments. PlenumPublishing Corporation. 1976, 1, pp. 50–55.
  • Assender, H.;. How Surface Topography Relates to Materials‘ Properties. Science. 2002, 297(5583), 973–976. DOI: 10.1126/science.1074955.
  • Ayllon, J. M.; Navarro, C.; Vazquez, J.; Domínguez, J. Fatigue Life Estimation in Dental Implants. Eng. Fract. Mech. 2014, 123, 34–43. DOI: 10.1016/j.engfracmech.2014.03.011.
  • Chaturvedi, T. P.;. An Overview of the Corrosion Aspect of Dental Implants (Titanium and Its Alloys). Indian J. Dental Res. 2009, 20(1), 91. DOI: 10.4103/0970-9290.49068.
  • Revathi, R.; Magesh, M.; Balla, V. K.; Das, M.; Manivasagam, G. Current Advances in Enhancement of Wear and Corrosion Resistance of Titanium Alloys – A Review. Mater. Technol. 2016, 31(12), 696–704. DOI: 10.1080/10667857.2016.1212780.
  • Khan, M. A.; Williams, R. L.; Williams, D. F. In-vitro Corrosion and Wear of Titanium Alloys in the Biological Environment. Biomaterials. 1996, 17(22), 2117–2126. DOI: 10.1016/0142-9612(96)00029-4.
  • Leo Kumar, S. P.; Avinash, D. Experimental Biocompatibility Investigations on Ti-6Al-7Nb Alloy in Micro Milling Operation in Terms of Corrosion Behavior and Surface Characteristics Study. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 346, 1–11.
  • Karayan, A. I.; Park, S.-W.; Lee, K.-M. Corrosion Behavior of Ti–Ta–Nb Alloys in Simulated Physiological Media. Mater. Lett. 2008, 62(12–13), 1843–1845. DOI: 10.1016/j.matlet.2007.10.028.
  • Gonzalez, J. E. G.; Mirza-Rosca, J. C. Study of the Corrosion Behavior of Titanium and Some of Its Alloys for Biomedical and Dental Implant Applications. J. Electroanal. Chem. 1999, 471(2), 109–115. DOI: 10.1016/S0022-0728(99)00260-0.
  • Kim, J.; Park, H. W. Influence of a Large Pulsed Electron Beam (LPEB) on the Corrosion Resistance of Ti−6Al−7Nb Alloys. Corros. Sci. 2015, 90, 153–160. DOI: 10.1016/j.corsci.2014.10.008.
  • Miotto, L. N.; Laiza, M. G.; Fais, A. L.; Ribeiro, R.; Vaz, L. G. Surface Properties of Ti-35Nb-7Zr-5Ta: Effects of Long-Term Immersion in Artificial Saliva and fluoride Solution. J. Prosthetic Dent. 2015, 10, 1–10.
  • Zhukova, Y. S.; Pustov, Y. A.; Konopatsky, A. S.; Dubinskiy, S. M.; Filonov, V.; Brailovski, M. R. Corrosion Fatigue and Electrochemical Behavior of Superelastic Ti-Nb-Ta Alloy for Medical Implants under Cyclic Load Conditions. Mater. Today Proc. 2015, 2s, S991–S994.
  • Bai, Y.; Li, J.; Li, S.; Hao, Y.; Zhang, X.; Yang, R., Yun Bai; Ji Li; Shujun Li; Yulin Hao; Xing Zhang; Rui Yang; Corrosion Behaviour and. Corrosion Behaviour and Surface Modification of the β-type Biomedical Ti-24Nb-4Zr-8Sn Alloys. Mater. Technol.2016, 31(12), 668–680. DOI: 10.1080/10667857.2016.1212586.
  • Guillemot, F.;. Recent Advances in the Design of Titanium Alloys for Orthopedic Applications. Expert Rev. Med. Devices. 2005, 2(6), 741–748. DOI: 10.1586/17434440.2.6.741.
  • Siddiqui, D. A.; Gindri, I. M.; Rodrigues, D. C. Corrosion and Wear Performance of Titanium and Cobalt Chromium Molybdenum Alloys Coated with Dicationic Imidazolium-Based Ionic Liquids. J. Bio Tribo-Corros. 2016, 2(4), 4. DOI: 10.1007/s40735-016-0057-9.
  • Long, M.; Rack, H. J. Titanium Alloys in Total Joint Replacement—a Materials Science Perspective. Biomaterials. 1998, 19(18), 1621–1639. DOI: 10.1016/S0142-9612(97)00146-4.
  • Niinomi, M.; Kuroda, D.; Fukunaga, K.-I.; Morinaga, M.; Kato, Y.; Yashiro, T.; Suzuki, A. Corrosion Wear Fracture of New β Type Biomedical Titanium Alloys. Materials Science and Engineering: A. 1999, 263(2), 193–199. DOI: 10.1016/S0921-5093(98)01167-8.
  • Farokhzadeh, K.; Edrisy, A. Transition between Mild and Severe Wear in Titanium Alloys. Tribol. Int. 2016, 94, 98–111. DOI: 10.1016/j.triboint.2015.08.020.
  • Poggie, R. A.; Mishra, A. K.; Davidson, J. A. Three-Body Abrasive Wear Behaviour of Orthopaedic Implant Bearing Surfaces from Titanium Debris. J. Mater. Sci.: Mater. Med. 1994, 5(6–7), 387–392.
  • Zhang, B.-R.; Cai, Z.-B.; Gan, X.-Q.; Zhu, M.-H.; YU, H.-Y. Dual Motion Fretting Wear Behaviors of Titanium and Its Alloy in Artificial Saliva. Trans. Nonferrous Met. Soc. China. 2014, 24(1), 100–107. DOI: 10.1016/S1003-6326(14)63033-8.
  • Niinomi, M.;. Mechanical Biocompatibilities of Titanium Alloys for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2008, 1(1), 30–42. DOI: 10.1016/j.jmbbm.2007.07.001.
  • Agins, H. J.; Alcock, N. W.; Bansal, M.; Salvati, E. A.; Wilson, P. D.; Pellicci, P. M.; Bullough, P. G. Metallic Wear in Failed Titanium-Alloy Total Hip Replacements. Histological Quant. Anal. 1988, 70(3), 11.
  • Bertolini, R.; Bruschi, S.; Ghiotti, A.; Pezzato, L.; Dabala, M. Influence of the Machining Cooling Strategies on the Dental Tribocorrosion Behaviour of Wrought and Additive Manufactured Ti6Al4V. Biotribology. 2017, 11, 60–68. DOI: 10.1016/j.biotri.2017.03.002.
  • Ghosh, S.; Abanteriba, S. Status of Surface Modification Techniques for Artificial Hip Implants. Sci. Technol. Adv. Mater. 2016, 17(1), 715–735. DOI: 10.1080/14686996.2016.1240575.
  • Bull, S. J.; Moharrami, N.; Langton, D. Mechanistic Study of the Wear of Ceramic Heads by Metallic Stems in Modular Implants. J. Bio Tribo-Corros. 2017, 3(1), 1–8. DOI: 10.1007/s40735-016-0066-8.
  • Ganesh, B. K. C.; Ramanaih, N.; Chandrasekhar Rao, P. V. Dry Sliding Wear Behavior of Ti–6Al–4V Implant Alloy Subjected to Various Surface Treatments. Transactions of the Indian Institute of Metals. 2012, 65(5), 425–434. DOI: 10.1007/s12666-012-0147-4.
  • Yildiz, F.; Yetim, A. F.; Alsaran, A.; Efeoglu, I. Wear and Corrosion Behaviour of Various Surface Treated Medical Grade Titanium Alloy in Bio-Simulated Environment. Wear. 2009, 267(5–8), 695–701. DOI: 10.1016/j.wear.2009.01.056.
  • Gepreel, M. A.-H.; Niinomi, M. Biocompatibility of Ti-Alloys for Long-Term Implantation. J. Mech. Behav. Biomed. Mater. 2013, 20, 407–415. DOI: 10.1016/j.jmbbm.2012.11.014.
  • Vadiraj, A.; Kamaraj, M.; Kamachi Mudali, U.; Nath, A. K. Effect of Surface Modified Layers on Fretting Fatigue Damage of Biomedical Titanium Alloys. Mater. Sci. Technol. 2006, 22(9), 1119–1125. DOI: 10.1179/174328406X109212.
  • Sheremetyev, V.; Prokoshkin, S.; Brailovski, V.; Dubinskiy, S.; Filonov, M.; Petrzhik, M. Long-Term Stability of Superelastic Behavior of Nanosubgrained Ti-Nb-Zr and Ti-Nb-Ta Shape Memory Alloys. Mater. Today Proc. 2015, 2, S26–S31.
  • Carrion, P. E.; Shamsaei, N.; Daniewicz, S. R.; Moser, R. D. Fatigue Behavior of Ti-6Al-4V ELI Including Mean Stress Effects. Int. J. Fatigue. 2017, 99, 87–100. DOI: 10.1016/j.ijfatigue.2017.02.013.
  • Pazos, L.; Corengia, P.; Svoboda, H. Effect of Surface Treatments on the Fatigue Life of Titanium for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2010, 3(6), 416–424. DOI: 10.1016/j.jmbbm.2010.03.006.
  • Yeshwante, B.; Patil, S.; Baig, N.; Gaikwad, S.; Swami, A.; Doiphode, M. Dental Implants- Classification, Success and Failure –an Overview. IOSR J. Dental Med. Sci. 2015, 14(5), 01–08.
  • Rubino, F.; Paradiso, V.; Astarita, A.; Carlone, P.; Squillace, A. Cold Spray Coatings Recent Trends and Future Perspectives; Cavaliere, P. Eds.; Springer international Publication: Switzerland, 2018.
  • Carlone, P.; Astarita, A.; Rubino, F.; Pasquino, N.; Aprea, P. Selective Laser Treatment on Cold-Sprayed Titanium Coatings: Numerical Modeling and Experimental Analysis. Metallurgical and Materials Transactions B. 2016, 47(6), 3310–3317. DOI: 10.1007/s11663-016-0636-7.
  • Rubino, F.; Astarita, A.; Carlone, P. Thermo-Mechanical Finite Element Modeling of the Laser Treatment of Titanium Cold-Sprayed. Coatings.Coatings. 2018, 219(8), 1–17.
  • Kwasniak, P.; Pura, J.; Zwolinska, M.; Wiecinski, P.; Skarzynski, H.; Olszewski, L.; Marczak, J.; Garbacz, H.; Kurzydlowski, K. J. Laser and Chemical Surface Modifications of Titanium Grade 2 for Medical Application. Appl. Surf. Sci. 2015, 336, 267–273. DOI: 10.1016/j.apsusc.2014.11.178.
  • Kuczynska, D.; Kwasniak, P.; Pisarek, M.; Borowicz, P.; Garbacz, H. Influence of Surface Pattern on the Biological Properties of Ti Grade 2. Mater. Charact. 2018, 135, 337–347. DOI: 10.1016/j.matchar.2017.09.024.
  • Kuczynska, D.; Kwasniak, P.; Marczak, J.; Bonarski, J.; Smolik, J.; Garbacz, H. Laser Surface Treatment and the Resultant Hierarchical Topography of Ti Grade 2 for Biomedical Application. Appl. Surf. Sci. 2016, 390, 560–569. DOI: 10.1016/j.apsusc.2016.08.105.
  • Tanzi, M. C.; Bozzini, S.; Candiani, G.; Cigada, A.; De Nardo, L.; Fare, S.; Ganazzoli, F.; Gastaldi, D.; Levi, M.; Metrangolo, P.; et al. Trends in Biomedical Engineering: Focus on Smart Bio-Materials and Drug Delivery. J. Appl. Biomater. Biomech. 2011, 9(2), 87–97. DOI: 10.5301/JABB.2011.8563.
  • Dubey, A. K.; Yadava, V. Laser Beam Machining—A Review. Int. J. Mach. Tools Manuf. 2008, 48(6), 609–628. DOI: 10.1016/j.ijmachtools.2007.10.017.
  • Bussoli, M.; Desai, T.; Batani, D.; Gakovic, B.; Trtica, M. Nd:YAG Laser Interaction with Titanium Implant Surfaces for Medical Applications. Radiat. Eff. Defects Solids. 2008, 163(4–6), 349–356. DOI: 10.1080/10420150701777678.
  • Mukherjee, S.; Dhara, S.; Saha, P. Laser Surface Remelting of Ti and Its Alloys for Improving Surface Biocompatibility of Orthopaedic Implants. Mater. Technol. 2018, 33(2), 106–118. DOI: 10.1080/10667857.2017.1390931.
  • Khosroshahi, M.; Mahmoodi, M.; Saeedinasab, H.; Tahriri, M. Evaluation of Mechanical and Electrochemical Properties of Laser Surface Modified Ti–6Al–4V for Biomedical Applications: In Vitro Study. Surf. Eng. 2008, 24(3), 209–218. DOI: 10.1179/174329408X282505.
  • Ahmed, N.; Darwish, S.; Alahmari, A. M.; Salik, K. Laser Ablation Process Competency to Fabricate Microchannels in Titanium Alloy. Mater. Manuf. Processes. 2015, 30(11), 1290–1297. DOI: 10.1080/10426914.2015.1019132.
  • Chang, Y.-J.; Hung, Y.-C.; Kuo, C.-L.; Hsu, J.-C.; Ho, -C.-C. Hybrid Stamping and Laser Micromachining Process for Micro-scale Hole Drilling. Mater. Manuf. Processes. 2017, 32(15), 1685–1691. DOI: 10.1080/10426914.2017.1328115.
  • Ahmed, N.; Darwish, S.; Alahmari, A. M. Laser Ablation and Laser-Hybrid Ablation Processes: A Review. Mater. Manuf. Processes. 2016, 31(9), 1121–1142. DOI: 10.1080/10426914.2015.1048359.
  • Yang, C.; Tian, Y.; Cui, L.; Zhang, D. Laser-Induced Changes in Titanium by Femtosecond, Picosecond and Millisecond Laser Ablation. Radiat. Eff. Defects Solids. 2015, 170(6), 528–540. DOI: 10.1080/10420150.2015.1052436.
  • Chan, C.-W.; Carson, L.; Smith, G. C.; Morelli, A.; Lee, S. Enhancing the Antibacterial Performance of Orthopaedic Implant Materials by Fibre Laser Surface Engineering. Appl. Surf. Sci. 2017, 404, 67–81. DOI: 10.1016/j.apsusc.2017.01.233.
  • Dornfeld, D.; Min, S.; Takeuchi, Y. Recent Advances in Mechanical Micromachining. CIRP Annals. 2006, 55(2), 745–768. DOI: 10.1016/j.cirp.2006.10.006.
  • Aurich, J. C.; Bohley, M.; Reichenbach, I. G.; Kirsch, B. Surface Quality in Micro Milling: Influences of Spindle and Cutting Parameters. CIRP Annals. 2017, 66(1), 101–104. DOI: 10.1016/j.cirp.2017.04.029.
  • Leo Kumar, S. P.; Jerald, J.; Kumanan, S.; Prabakaran, R. A Review on Current Research Aspects in Tool-Based Micromachining Processes. Mater. Manuf. Processes. 2014, 29(11–12), 1291–1337. DOI: 10.1080/10426914.2014.952037.
  • Masuzawa, T.;. State of the Art of Micromachining. CIRP Ann. Manuf. Technol. 2000, 49(2), 473–488. DOI: 10.1016/S0007-8506(07)63451-9.
  • Thepsonthi, T.; Ozel, T. Multi-Objective Process Optimization for Micro-End Milling of Ti-6Al-4V Titanium Alloy. Int. J. Adv. Manuf. Technol. 2012, 63(9–12), 903–914. DOI: 10.1007/s00170-012-3980-z.
  • Frenkel, S. R.; Simon, J.; Alexander, H.; Dennis, M.; Ricci, J. L. Osseointegration on Metallic Implant Surfaces: Effects of Microgeometry and Growth Factor Treatment. J. Biomed. Mater. Res. 2002, 63(6), 706–713. DOI: 10.1002/jbm.10408.
  • Venkatesh, V.; Swain, N.; Srinivas, G.; Kumar, P.; Barshilia, H. C. Review on the Machining Characteristics and Research Prospects of Conventional Microscale Machining Operations. Mater. Manuf. Processes. 2017, 32(3), 235–262. DOI: 10.1080/10426914.2016.1151045.
  • Attanasio, A.; Gelfi, M.; Pola, A.; Ceretti, E.; Giardini, C. Influence of Material Microstructures in Micromilling of Ti6Al4V Alloy. Materials. 2013, 6(9), 4268–4283. DOI: 10.3390/ma6094268.
  • Elias, C. N.; Lima, J. H. C.; da Silva, M. P.; Muller, C. A. Titanium Dental Implants With Different Morphologies. Surf. Eng. 2002, 18(1), 46–49. DOI: 10.1179/026708401225001200.
  • Chehroudi, B.; McDonnell, D.; Brunette, D. M. The Effects of Micromachined Surfaces on Formation of Bonelike Tissue on Subcutaneous Implants as Assessed by Radiography and Computer Image Processing. J. Biomed. Mater. Res. 1997, 34(3), 279–290. DOI: 10.1002/(SICI)1097-4636(19970305)34:3<279::AID-JBM2>3.0.CO;2-H.
  • Li, G.; Qu, D.; Feng, W. W.; Wang, B.; Li, N. Modeling and Experimental Study on the Force of Micro-Milling Titanium Alloy Based on Tool Runout. The International Journal of Advanced Manufacturing Technology. 2016, 87(1–4), 1193–1202. DOI: 10.1007/s00170-016-8473-z.
  • Jing, X.; Huaizhong, L.; Wang, J.; Yuan, Y.; Zhang, D.; Kwok, N.; Nguyen, T. An Investigation of Surface Roughness in Micro End-milling of Metals. Australian Journal of Mechanical Engineering. 2016, 15(3), 1–9.
  • Vehmeyer, J.; Piotrowska-Kurczewski, I.; Bohmermann, F.; Riemer, O.; Maab, P. Least-Squares Based Parameter Identification for a Function-Related Surface Optimisation in Micro Ball-End Milling. Procedia CIRP. 2015, 31, 276–281. DOI: 10.1016/j.procir.2015.03.076.
  • Thepsonthi, T.; Ozel, T. Experimental and Finite Element Simulation Based Investigations on Micro-Milling Ti-6Al-4V Titanium Alloy: Effects of CBN Coating on Tool Wear. Journal of Materials Processing Technology. 2013, 213(4), 532–542. DOI: 10.1016/j.jmatprotec.2012.11.003.
  • Narutaki, N.; Murakoshi, A.; Motonishi, S.; Takeyama, H. Study on Machining of Titanium Alloys. CIRP Annals. 1983, 32(1), 65–69. DOI: 10.1016/S0007-8506(07)63362-9.
  • de Oliveira, F. B.; Rodrigues, A. R.; Coelho, R. T.; de Souza, A. F. Size Effect and Minimum Chip Thickness in Micromilling. Int. J. Mach. Tools Manuf. 2015, 89, 39–54. DOI: 10.1016/j.ijmachtools.2014.11.001.
  • Pratap, T.; Patra, K.; Fabrication and Surface Characterization of Tool Based Micro-Dimple Texture on Ti-6Al-4V for Biomedical Implants. Proceedings of AIMTDR, Pune. 2016, 2050–2054.
  • Mishra, S.; Yadava, V. Laser Beam MicroMachining (LBMM) – A Review. Opt. Lasers Eng. 2015, 73, 89–122. DOI: 10.1016/j.optlaseng.2015.03.017.
  • Li, Y.; Xiong, J.; Wong, C. S.; Hodgson, P. D.; Wen, C. Ti6Ta4Sn Alloy and Subsequent Scaffolding for Bone Tissue Engineering. Tissue Engineering Part A. 2009, 15(10), 3151–3159. DOI: 10.1089/ten.tea.2009.0150.
  • Kim, D.-G.; Jeong, Y.-H.; Chien, -H.-H.; Agnew, A. M.; Lee, J. W.; Wen, H. B. Immediate Mechanical Stability of Threaded and Porous Implant Systems. Clin. Biomech. 2017, 48, 110–117. DOI: 10.1016/j.clinbiomech.2017.08.001.
  • Wally, Z. J.; van Grunsven, W.; Claeyssens, F.; Goodall, R.; Reilly, G. Porous Titanium for Dental Implant Applications. Metals. 2015, 5(4), 1902–1920. DOI: 10.3390/met5041902.
  • Cui, C.; Hu, B.; Zhao, L.; Liu, S. Titanium Alloy Production Technology, Market Prospects and Industry Development. Mater. Des. 2011, 32(3), 1684–1691. DOI: 10.1016/j.matdes.2010.09.011.
  • Singh, R.; Lee, P. D.; Dashwood, R. J.; Lindley, T. C. Titanium Foams for Biomedical Applications: A Review. Mater. Technol. 2010, 25(3–4), 127–136. DOI: 10.1179/175355510X12744412709403.
  • Torres, Y.; Pavon, J.; Trueba, P.; Cobos, J.; Rodriguez-Ortiz, J. A. Design, Fabrication and Characterization of Titanium with Graded Porosity by Using Space-Holder Technique. Procedia Mater. Sci. 2014, 4, 115–119. DOI: 10.1016/j.mspro.2014.07.610.
  • Torres, Y.; Pavon, J. J.; Nieto, I.; Rodríguez, J. A. Conventional Powder Metallurgy Process and Characterization of Porous Titanium for Biomedical Applications. Metallurgical and Materials Transactions B. 2011, 42(4), 891–900. DOI: 10.1007/s11663-011-9521-6.
  • Chandrasekaran, M.; Xia, Z. S.; Kiong, L. K.; Prasad, Y.; Mun, C. C. Development of a New PM Titanium Alloy for Improved Processability. Mater. Sci. Technol. 2005, 21(2), 185–190. DOI: 10.1179/174328405X18674.
  • Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E. Evaluation of the Mechanical Properties of Powder Metallurgy Ti-6Al-7Nb Alloy. J. Mech. Behav. Biomed. Mater. 2017, 67, 110–116. DOI: 10.1016/j.jmbbm.2016.12.005.
  • Liu, J.; Chang, L.; Liu, H.; Li, Y.; Yang, H.; Ruan, J. Microstructure, Mechanical Behavior and Biocompatibility of Powder Metallurgy Nb-Ti-Ta Alloys as Biomedical Material. Materials Science and Engineering: C. 2017, 71, 512–519. DOI: 10.1016/j.msec.2016.10.043.
  • Nugroho, A. W.; Leadbeater, G.; Davies, I. J. Processing and Properties of Porous Ti-Nb-Ta-Zr Alloy for Biomedical Applications Using the Powder Metallurgy Route. Australian Journal of Mechanical Engineering. 2011, 8(2), 169–176. DOI: 10.1080/14484846.2011.11464608.
  • Yu, S.; Yu, Z.; Wang, G.; Han, J.; Ma, X.; Dargusch, M. S. Biocompatibility and Osteoconduction of Active Porous Calcium–phosphate Films on a Novel Ti–3Zr–2Sn–3Mo–25Nb Biomedical Alloy. Colloids Surf. B. 2011, 85(2), 103–115. DOI: 10.1016/j.colsurfb.2011.02.025.
  • Fang, Z. Z.; Paramore, J. D.; Sun, P. Powder Metallurgy of Titanium – Past, Present, and Future. Int. Mater. Rev. 2017, 63(7), 1–53.
  • Bose, S.; Robertson, S. F.; Bandyopadhyay, A. Surface Modification of Biomaterials and Biomedical Devices Using Additive Manufacturing. Acta Biomater. 2018, 66, 6–22. DOI: 10.1016/j.actbio.2017.11.003.
  • Murr, L. E.;. Additive Manufacturing of Biomedical Devices: An Overview. Mater. Technol. 2018, 33(1), 57–70. DOI: 10.1080/10667857.2017.1389052.
  • Sidambe, A. T. Biocompatibility of Advanced Manufactured Titanium Implants—A Review. Materials. 2014, 7(12), 8168–8188. DOI: 10.3390/ma7128168.
  • Yeong, W. Y.; Chua, C. K. A Quality Management Framework for Implementing Additive Manufacturing of Medical Devices. Virtual Phys. Prototyp. 2013, 8(3), 193–199. DOI: 10.1080/17452759.2013.838053.
  • Cox, S. C.; Jamshidi, P.; Eisenstein, N. M.; Webber, M. A.; Hassanin, H.; Attallah, M. M.; Shepherd, D. E. T.; Addison, O.; Grover, L. M. Adding Functionality with Additive Manufacturing: Fabrication of Titanium-Based Antibiotic Eluting Implants. Materials Science and Engineering: C. 2016, 64, 407–415. DOI: 10.1016/j.msec.2016.04.006.
  • Zhang, L.-C.; Attar, H.; Calin, M.; Eckert, J. Review on Manufacture by Selective Laser Melting and Properties of Titanium Based Materials for Biomedical Applications. Mater. Technol. 2016, 31(2), 66–76. DOI: 10.1179/1753555715Y.0000000076.
  • Hao, Y.-L.; Li, S.-J.; Yang, R. Biomedical Titanium Alloys and Their Additive Manufacturing. Rare Met. 2016, 35(9), 661–671. DOI: 10.1007/s12598-016-0793-5.
  • El-Hajje, A.; Kolos, E. C.; Wang, J. K.; Maleksaeedi, S.; He, Z.; Wiria, F. E.; Choong, C.; Ruys, A. J. Physical and Mechanical Characterisation of 3D-printed Porous Titanium for Biomedical Applications.. Journal of Materials Science. Materials in Medicine. 2014, 25(11), 2471–2480.
  • Francis, V.; Jain, P. K. Investigation on the Effect of Surface Modification of 3D Printed Parts by Nanoclay and Dimethyl Ketone. Mater. Manuf. Processes. 2018, 33(10), 1080–1092. DOI: 10.1080/10426914.2017.1401717.
  • Wang, M.; Lin, X.; Huang, W. Laser Additive Manufacture of Titanium Alloys. Mater. Technol. 2016, 31(2), 1–8.
  • Gu, D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms. Int. Mater. Rev. 2012, 57(3), 133–164. DOI: 10.1179/1743280411Y.0000000014.
  • Harvey, A. G.; Hill, E. W.; Bayat, A. Designing Implant Surface Topography for Improved Biocompatibility. Expert Review of Medical Devices. 2013, 10(2), 257–267. DOI: 10.1586/erd.12.82.
  • Patricia Capellato, P.; Riedel, N. A.; Williams, J. D.; Machado, B.; Popat, K. C.; Claro, P. R. Surface Modification on Ti-30Ta Alloy for Biomedical Application. Engineering. 2013, 05(9), 707–713. DOI: 10.4236/eng.2013.59084.
  • Elias, C. N.; Meirelles, L. Improving Osseointegration of Dental Implants. Expert Rev. Med. Devices. 2010, 7(2), 241–256. DOI: 10.1586/erd.09.74.
  • Wen, C.;. Surface Coating and Modification of Metallic Biomaterials; Woodhead Publishing is an imprint of Elsevier: United Kingdom, 2015; pp 1–431.
  • Michelle Grandin, H.; Berner, S.; Dard, M. A Review of Titanium Zirconium (Tizr) Alloys for Use in Endosseous Dental Implants. Materials. 2012, 5(8), 1348–1360. DOI: 10.3390/ma5081348.
  • Senin, N.; Groppetti, R. Surface Microtopography Design and Manufacturing through Topography Descriptors: An Application to Prosthetic Implant Surfaces. Comput. Aided Des. 2005, 37(11), 1163–1175. DOI: 10.1016/j.cad.2005.02.007.
  • Kulkarni, M.; Mazare, A.; Schmuki, P.; Iglic, A. Biomaterial Surface Modification of Titanium and Titanium Alloys for Medical Applications. Nanomedicine. 2014, 111–136.
  • Huang, -H.-H.; Ho, C.-T.; Lee, T.-H.; Lee, T.-L.; Liao, -K.-K.; Chen, F.-L. Effect of Surface Roughness of Ground Titanium on Initial Cell Adhesion. Biomol. Eng. 2004, 21(3–5), 93–97. DOI: 10.1016/j.bioeng.2004.05.001.
  • Venugopalan, R.;. Surface Topography, Corrosion and Microhardness of Nitrogen-diffusion-hardened Titanium Alloy. Biomaterials. 1999, 20(18), 1709–1716. DOI: 10.1016/S0142-9612(99)00079-4.
  • Kohn, D. H.;. Metals in Medical Applications. Curr. Opin. Solid State Mater. Sci. 1998, 3(3), 309–316. DOI: 10.1016/S1359-0286(98)80107-1.
  • Curylofo, F. D. A.; Barbosa, L. A.; Roselino, A. L.; Fais, L. M. G.; Vaz, L. G. Instrumentation of Dental Implants: A Literature Review. RSBO. 2013, 10(1), 83–84.
  • Rupp, F.; Liang, L.; Geis-Gerstorfer, J.; Scheideler, L.; Hüttig, F. Surface Characteristics of Dental Implants: A Review. Dent. Mater. 2018, 34(1), 40–57. DOI: 10.1016/j.dental.2017.09.007.
  • Skoog, S. A.; Kumar, G.; Narayan, R. J.; Goering, P. L. Biological Responses to Immobilized Microscale and Nanoscale Surface Topographies. Pharmacol. Ther. 2018, 182, 33–55. DOI: 10.1016/j.pharmthera.2017.07.009.
  • Nespor, D.; Denkena, B.; Grove, T.; Pape, O. Surface Topography after Re-Contouring of Welded Ti-6Al-4V Parts by Means of 5-Axis Ball Nose End Milling. Int. J. Adv. Manuf. Technol. 2016, 85(5–8), 1585–1602. DOI: 10.1007/s00170-015-7885-5.
  • Von Recum, A. F.; Shannon, C. E.; Cannon, C. E.; Long, K. J.; Van Kooten, T. G.; Meyle, J. Surface Roughness, Porosity, and Texture as Modifiers of Cellular Adhesion. Tissue Eng. 1996, 2(4), 241–253. DOI: 10.1089/ten.1996.2.241.
  • Daood, U.; Bandey, N.; Qasim, S. B.; Omar, H.; Khan, S. A. Surface Characterization Analysis of Failed Dental Implants Using Scanning Electron Microscopy. Acta Odontol. Scand. 2011, 69(6), 367–373. DOI: 10.3109/00016357.2011.569507.
  • Kang, B.-S.; Sul, Y.-T.; Oh, S.-J.; Lee, H.-J.; Tomas Albrektsson, T. XPS, AES and SEM Analysis of Recent Dental Implants. Acta Biomater. 2009, 5(6), 2222–2229. DOI: 10.1016/j.actbio.2009.01.049.
  • Sun, S.; Brandt, M.; Dargusch, M. S. Characteristics of Cutting Forces and Chip Formation in Machining of Titanium Alloys. Int. J. Mach. Tools Manuf. 2009, 49(7–8), 561–568. DOI: 10.1016/j.ijmachtools.2009.02.008.
  • Pramanik, A.; Littlefair, G. Machining of Titanium Alloy (Ti-6al-4v) —theory to Application. Mach. Sci. Technol. 2015, 19(1), 1–49. DOI: 10.1080/10910344.2014.991031.
  • Bandapalli, C.; Singh, K. K.; Sutaria, B. M.; Bhatt, D. V. Experimental Investigation of Machinability Parameters in High-Speed Micro-End Milling of Titanium (Grade-2). Int. J. Adv. Manuf. Technol. 2016, 85(9–12), 2139–2153. DOI: 10.1007/s00170-015-7443-1.
  • Elias, C. N.; Oshida, Y.; Lima, J. H. C.; Muller, C. A. Relationship between Surface Properties (Roughness, Wettability and Morphology) of Titanium and Dental Implant Removal Torque. J. Mech. Behav. Biomed. Mater. 2008, 1(3), 234–242. DOI: 10.1016/j.jmbbm.2007.12.002.
  • Elias, C. N.; Meyers, M. A.; Valiev, R. Z.; Monteiro, S. N. Ultrafine Grained Titanium for Biomedical Applications: An Overview of Performance. J. Mater. Res. Technol. 2013, 2(4), 340–350. DOI: 10.1016/j.jmrt.2013.07.003.
  • Madarkar, R.; Agarwal, S.; Attar, P.; Ghosh, S.; Rao, P. V. Application of Ultrasonic Vibration Assisted MQL in Grinding of Ti–6Al–4V. Mater. Manuf. Processes. 2018, 33(13), 1445–1452. DOI: 10.1080/10426914.2017.1415451.
  • Paul, S.; Singh, A. K.; Ghosh, A. Grinding of Ti-6Al-4V under Small Quantity Cooling Lubrication Environment Using Alumina and MWCNT Nanofluids. Mater. Manuf. Processes. 2017, 32(6), 608–615. DOI: 10.1080/10426914.2016.1257797.
  • Majumdar, S.; Kumar, S.; Roy, D.; Chakraborty, S.; Das, S. Improvement of Lubrication and Cooling in Grinding. Mater. Manuf. Processes. 2018, 33(13), 1459–1465. DOI: 10.1080/10426914.2017.1364756.
  • Liu, G.; Li, C.; Zhang, Y.; Yang, M.; Jia, D.; Zhang, X.; Guo, S.; Li, R.; Zhai, H. Process Parameter Optimization and Experimental Evaluation for Nanofluid MQL in Grinding Ti-6Al-4V Based on Grey Relational Analysis. Mater. Manuf. Processes. 2018, 33(9), 950–963.
  • Zeidler, H.; Boettger-Hiller, F.; Edelmann, J.; Schubert, A. Surface Finish Machining of Medical Parts Using Plasma Electrolytic Polishing. Procedia CIRP. 2016, 49, 83–87. DOI: 10.1016/j.procir.2015.07.038.
  • Hayes, J. S.; Seidenglanz, U.; Pearce, A. I.; Pearce, S. G.; Archer, C. W.; Richards, R. G. Surface Polishing Positively Influences Ease of Plate and Screw Removal. Eur. Cells Mater. 2010, 19, 117–126. DOI: 10.22203/eCM.v019a12.
  • Kenny, E. D.; Da Silva, J. M.; Henke, S. L.; Lazaris, J.; Onnoda, R. T.; Maistrovicz, J. V. Development of Polishing Technology for Titanium Used in Surgical Implants. Surf. Eng. 1999, 15(5), 415–417. DOI: 10.1179/026708499101516812.
  • Zaborski, S.; Sudzik, A.; WolYniec, A. Electrochemical Polishing of Total Hip Prostheses. Arch. Civil Mech. Eng. 2011, 11(4), 1053–1062. DOI: 10.1016/S1644-9665(12)60095-8.
  • Ozdemir, Z.; Ozdemir, A.; Basim, G. B. Application of Chemical Mechanical Polishing Process on Titanium Based Implants. Materials Science and Engineering: C. 2016, 68, 383–396. DOI: 10.1016/j.msec.2016.06.002.
  • Bennani, V.; Hwang, L.; Tawse-Smith, A.; Dias, G. J.; Cannon, R. D. Effect of Air-Polishing on Titanium Surfaces, Biofilm Removal, and Biocompatibility: A Pilot Study. Biomed Res. Int. 2015, 2015, 1–8. DOI: 10.1155/2015/491047.
  • Tatsumi, N.; Harano, K.; Ito, T.; Sumiya, H. Polishing Mechanism and Surface Damage Analysis of Type IIa Single Crystal Diamond Processed by Mechanical and Chemical Polishing Methods. Diamond Relat. Mater. 2016, 63, 80–85. DOI: 10.1016/j.diamond.2015.11.021.
  • Le Guehennec, L.; Soueidan, A.; Layrolle, P.; Amouriq, Y. Surface Treatments of Titanium Dental Implants for Rapid Osseointegration. Dent. Mater. 2007, 23(7), 844–854. DOI: 10.1016/j.dental.2006.06.025.
  • Croitoru, S. M.; Mihailescu, I. N.; Popovici, I. A. Materials and Technologies Used in Present Dental Implants Manufacturing. Proc. Manuf. Syst. 2014, 9(1), 47–52.
  • Conrado Aparicio, F.; Gil, J.; Fonseca, C.; Barbosa, M.; Planell, J. A. Corrosion Behaviour of Commercially Pure Titanium Shot Blasted with Different Materials and Sizes of Shot Particles for Dental Implant Applications. Biomaterials. 2003, 24(2), 63–273.
  • Dong, S.; Liao, H. Substrate Pre-Treatment by Dry-Ice Blasting and Cold Spraying of Titanium. Surf. Eng. 2018, 34(3), 173–180. DOI: 10.1080/02670844.2016.1210894.
  • Guo, C. Y.; Hong Tang, A. T.; Matinlinna, J. P. Insights into Surface Treatment Methods of Titanium Dental Implants. J. Adhes. Sci. Technol. 2012, 26, 189–205.
  • Louropoulou, A.; Slot, D. E.; Van der Weijden, F. A. Titanium Surface Alterations following the Use of Different Mechanical Instruments: A Systematic Review: Effect of Mechanical Means on Implant Surfaces. Clin. Oral Implants Res. 2012, 23(6), 643–658. DOI: 10.1111/j.1600-0501.2011.02208.x.
  • Javier Gil, F.; Planell, J. A.; Padros, A.; Aparicio, C. The Effect of Shot Blasting and Heat Treatment on the Fatigue Behavior of Titanium for Dental Implant Applications. Dent. Mater. 2007, 23(4), 486–491. DOI: 10.1016/j.dental.2006.03.003.
  • Al-Radha, D. A. S.;. The Influence of Different Acids Etch on Dental Implants Titanium Surface. IOSR J. Dental Med. Sci. 2016, 15(8), 87–91. DOI: 10.9790/0853-1508098791.
  • Giordano, C.; Sandrini, E.; Del Curto, B.; Signorelli, E.; Rondelli, G.; Di Silvio, L. Titanium for Osteointegration: Comparison between a Novel Biomimetic Treatment and Commercially Exploited Surfaces. J. Appl. Biomater. Biomech. 2004, 2, 35–44.
  • Nadai, L.; Katona, B.; Terdik, A.; Bognar, E. Chemical Etching of Titanium Samples. Period. Polytech. Mech. Eng. 2013, 57(2), 53–57. DOI: 10.3311/PPme.7046.
  • Jemat, A.; Ghazali, M. J.; Razali, M.; Otsuka, Y. Surface Modifications and Their Effects onTitanium Dental Implants. Bio Med. Res. Int. 2015, 1–11.
  • Manjaiah, M.; Laubscher, R. F. Effect of Anodizing on Surface Integrity of Grade 4 Titanium for Biomedical Applications. Surf. Coat. Technol. 2017, 310, 263–272. DOI: 10.1016/j.surfcoat.2016.12.038.
  • Lee, J.-T.; Cho, S.-A. Biomechanical Evaluation of Laser-Etched Ti Implant Surfaces Vs. Chemically Modified SLA Ti Implant Surfaces: Removal Torque and Resonance Frequency Analysis in Rabbit Tibias. J. Mech. Behav. Biomed. Mater. 2016, 61, 299–307. DOI: 10.1016/j.jmbbm.2016.03.034.
  • Chrcanovic, B. R.; Martins, M. D. Study of the Influence of Acid Etching Treatments on the Superficial Characteristics of Ti. Mater. Res. 2014, 17(2), 373–380. DOI: 10.1590/S1516-14392014005000042.
  • Xie, Y.; Zuo, J.; Zhou, B.; Ma, L.; Yu, Z. M.; Wei, Q.; Tang, Z. G. Sandblast-Free Double-Etched Titanium for Dental Implants Application. Mater. Lett. 2016, 176, 74–77. DOI: 10.1016/j.matlet.2016.04.076.
  • Chen, Z. X.; Takao, Y.; Wang, W. X.; Matsubara, T.; Ren, L. M. Surface Characteristics and in Vitro Biocompatibility of Titanium Anodized in a Phosphoric Acid Solution at Different Voltages. Biomed. Mater. 2009, 4(6), 065003 (1–8). DOI: 10.1088/1748-6041/4/6/065003.
  • Chadda, D. M.; Patil, D. R. Implant and 3’S (Surface Topography, Surface Treatment, Sterilization). IOSR J. Dental Med. Sci. 2014, 13(6), 17–22. DOI: 10.9790/0853-13641722.
  • Kaluderovic, M. R.; Schreckenbach, J. P.; Graf, H.-L. Titanium Dental Implant Surfaces Obtained by Anodic Spark Deposition – From the past to the Future. Materials Science and Engineering: C. 2016, 69, 1429–1441. DOI: 10.1016/j.msec.2016.07.068.
  • Sul, Y.-T.; Johansson, C. B.; Petronis, S.; Krozer, A.; Jeong, Y.; Wennerberg, A.; Albrektsson, T. Characteristics of the Surface Oxides on Turned and Electrochemically Oxidized Pure Titanium Implants up to Dielectric Breakdown: The Oxide Thickness, Micropore Configurations, Surface Roughness, Crystal Structure and Chemical Composition. Biomaterials. 2002, 23(2), 491–501. DOI: 10.1016/S0142-9612(01)00131-4.
  • Wadhwani, C.; Brindis, M.; Kattadiyil, M. T.; O’Brien, R.; Chung, K.-H. Colorizing Titanium-6aluminum-4vanadium Alloy Using Electrochemical Anodization: Developing a Color Chart. J. Prosthetic Dent. 2018, 119(1), 26–28. DOI: 10.1016/j.prosdent.2017.02.010.
  • Wu, L.; Wen, C.; Zhang, G.; Liu, J.; Ma, K. Influence of Anodizing Time on Morphology, Structure and Tribological Properties of Composite Anodic Films on Titanium Alloy. Vacuum. 2017, 140, 176–184. DOI: 10.1016/j.vacuum.2016.12.047.
  • Yang, Y.; Oh, N.; Liu, Y.; Chen, W.; Oh, S.; Appleford, M.; Kim, S.; Kim, K.; Park, S.; Bumgardner, J.;; et al. Enhancing Osseointegration Using Surface-Modified Titanium Implants. JOM. 2006, 58(7), 71–76.
  • Kim, M.-H.; Park, K.; Choi, K.-H.; Kim, S.-H.; Kim, S. E.; Jeong, C.-M.; Huh, J.-B. Cell Adhesion and in Vivo Osseointegration of Sandblasted/Acid Etched/Anodized Dental Implants. Int. J. Mol. Sci. 2015, 16(12), 10324–10336. DOI: 10.3390/ijms160510324.
  • Lukaszewska-Kuskaa, M.; Wirstleinb, P.; Majchrowskic, R.; Dorocka-Bobkowskaa, B. Osteoblastic Cell Behaviour on Modified Titanium Surfaces. Micron. 2018, 105, 55–63. DOI: 10.1016/j.micron.2017.11.010.
  • Huang, -H.-H.; Wu, C.-P.; Sun, Y.-S.; Yang, W.-E.; Lee, T.-H. Surface Nanotopography of an Anodized Ti–6Al–7Nb Alloy Enhances Cell Growth. J. Alloys Compd. 2014, 615, S648–S654. DOI: 10.1016/j.jallcom.2013.12.235.
  • Singh, A.; Singh, B. P.; Wani, M. R.; Kumar, D.; Singh, J. K.; Singh, V. Effect of Anodization on Corrosion Behaviour and Biocompatibility of Cp-Titanium in Simulated Body Fluid. Bulletin of Materials Science. 2013, 36(5), 931–937. DOI: 10.1007/s12034-013-0536-2.
  • Larsson, C.; Thomsen, P.; Aronsson, B.-O.; Rodahl, M.; Lausmaa, J.; Kasemo, B.; Ericson, L. E. Bone Response to Surface-Modified Titanium Implants: Studies on the Early Tissue Response to Machined and Electropolished Implants with Different Oxide Thicknesses. Biomaterials. 1996, 17(6), 605–616. DOI: 10.1016/0142-9612(96)88711-4.
  • Ashraf Imam, M.;. The 12th World Conference on Titanium Presents Research and Applications of “Wonder Metal”. JOM. 2011, 63(10), 16–23. DOI: 10.1007/s11837-011-0166-3.
  • Jokstad, A.; Braegger, U.; Brunski, J. B.; Carr, A. B.; Naert, I.; Wennerberg, A. Quality of Dental Implants. Int. Dental J. 2003, 53(S6P2), 409–443. DOI: 10.1111/j.1875-595X.2003.tb00918.x.
  • Manivasagam, G.; Dhinasekaran, D.; Rajamanickam, A. Biomedical Implants: Corrosion and Its Prevention - A Review~!2009-12-22~!2010-01-20~!2010-05-25~! Recent Patents Corros. Sci. 2010, 2(1), 40–54. DOI: 10.2174/1877610801002010040.
  • Kabaso, D.; Gongadze, E.; Perutkova, S.; Matschegewski, C.; Kralj-Iglič, V.; Beck, U.; van Rienen, U.; Iglič, A. Mechanics and Electrostatics of the Interactions between Osteoblasts and Titanium Surface. Comput. Methods Biomech. Biomed. Eng. 2011, 14(5), 469–482.
  • Yang, M.; Li, C.; Zhang, Y.; Wang, Y.; Li, B.; Hou, Y. Experimental Research on Microscale Grinding Temperature under Different Nanoparticle Jet Minimum Quantity Cooling. Mater. Manuf. Processes. 2017, 32(6), 589–597. DOI: 10.1080/10426914.2016.1176198.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.