1,192
Views
50
CrossRef citations to date
0
Altmetric
Review

Bio-ceramic coatings adhesion and roughness of biomaterials through PM-EDM: a comprehensive review

ORCID Icon, , , , &
Pages 1157-1180 | Received 07 Mar 2020, Accepted 13 May 2020, Published online: 16 Jul 2020

References

  • Geetha, M.; Singh, A. K.; Asokamami, R.; Gogia, A. K. Ti-based Biomaterials, the ultimate choice for Orthopedic Implants-review. Prog. Mater. Sci. 2009, 54, 397–425. DOI: 10.1016/j.pmatsci.2008.06.004.
  • Chen, Q.; George, A. Thouas. metallic implant biomaterials. Mater. Sci. Eng. R. 2015, 87, 1–57. DOI: 10.1016/j.mser.2014.10.001.
  • Navarro, M.; Michiardi, A.; Castano, O.; Planell, J. Biomaterials in Orthopedics. J. Royal Soc. Interface. 2008, 5, 1137–1158. DOI: 10.1098/rsif.2008.0151.
  • Mahajan, A.; Sidhu, S. S. Surface modification of metallic biomaterials for enhanced functionality: a review. Mater. Technol. 2018, 33, 93–105. DOI: 10.1080/10667857.2017.1377971.
  • Winkler, T.; Sass, F. A.; Duda, G. N.; Schmidt-Bleek, K. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering. Bone Joint Res. 2018, 7, 232–243. DOI: 10.1302/2046-3758.73.BJR-2017-0270.R1.
  • Stefan-Catalin Popescu, G. I.; Gheorghe, O. D.; Daniel, B. Some problems biocompatible materials used for making Endoprostheses Ankle. Int. J. Mech. Appl. Mech. 2017, Issue, 1.
  • Frosch, K.-H.; Sturmer, K. M. Metallic biomaterials in skeletal repair. Eur. J. Trauma. 2006, 32, 149–159. DOI: 10.1007/s00068-006-6041-1.
  • Niinomi, M.;. Recent metallic materials for biomedical applications. Metall. Mater. Trans. 2002, 33, 477–486. DOI: 10.1007/s11661-002-0109-2.
  • Uwais, Z. A.; Hussein, M. A.; Samad, M. A.; Al-Aqeeli, N. Surface modification of metallic biomaterials for better tribological properties: a review. Arabian J. Sci. Eng. 2017, 42, 4493–4512. DOI: 10.1007/s13369-017-2624-x.
  • Pandey, A.; Awasthi, A.; Saxena, K. K. Metallic implants with properties and latest production techniques: a review. Adv. Mater. Process. Technol. 2020, 6,  405-440.
  • Prakash, C.; Kansal, H. K.; Pabla, B. S.; puri, S.; Aggarwal, A. Electric discharge machining-a potential choice for surface modification for metallic implants for orthopedic applications: a review. J. Eng. Manuf. 2015. DOI: 10.1177/0954405415579113.
  • Harun, W. S. W.; Asri, R. I. M.; Alias, J.; Zulkifli, F. H.; Kadirgama, K.; Ghani, S. A. C.; Shariffuddin, J. H. M. A comprehensive review of hydroxyapatite-based coating adhesion on metallic biomaterials. Ceram. Int. 2018, 44, 1250–1268. DOI: 10.1016/j.ceramint.2017.10.162.
  • Patel, P. R. B. S. M.;. A review of parametric optimization of wire electric discharge machining. Indian J. Appl. Res. 2015, 5, 60–62.
  • Kareem, S. A.; Khan, A. A.; Konneh, M. Cooling effect on electrode and process parameters in EDM. Mater. Manuf. Process. 2010, 25, 462–466. DOI: 10.1080/15394450902996619.
  • Aliyu, A. A. A.; Rohani, J. M.; Abdul Rani, A. M.; Musa, H. Optimization of electric discharge machining parameters of SiSiC through response surface methodology. J. Teknologi (Science and Engineering). 2017, 79, 119–129.
  • Razak, M. A.; Abdul-Rani, A. M.; Rao, T.; Pedapati, S. R.; Kamal, S. Electrical discharge machining on biodegradable AZ31 magnesium alloy using Taguchi method. Procedia Eng. 2016, 148, 916–922. DOI: 10.1016/j.proeng.2016.06.501.
  • Bui, V. D.; Mwangi, J. W.; Schubert, A. Powder mixed electric discharge machining for antibacterial coating on Titanium implant surfaces. J. Manuf. Process. 2019, 44, 261–270. DOI: 10.1016/j.jmapro.2019.05.032.
  • Miculescu, F.; Maidaniuc, A.; Voicu, S. L.; Thakur, V. K.; Stan, G. E.; Clocan, L. T. Progress in hydroxyapatite–starch based sustainable biomaterials for biomedical bone substitution applications. ACS Sustainable Chem. Eng. 2017, 5(10), 8491–8512. DOI: 10.1021/acssuschemeng.7b02314.
  • Chaharmahali, R.; Fattah-Alhosseini, A.; Esfahani, H. Increasing the In-vitro Corrosion Resistance of AZ31B-Mg Alloy via coating with hydroxyapatite using plasma electrolytic oxidation. J. Asian Ceram. Soc. 2019. DOI: doi.10.1080/21870764.2019.1698143.
  • Hu, H.-N.; Hsu, H.-C.; Wu, S.-C.; Hsu, C.-W.; Hsu, S.-K.; Ho, W.-F.; Hsu, C.-W.. Characterization of nano-scale hydroxyapatite coating synthesized from eggshells through hydrothermal reaction on commercially pure Titanium. Coat. 2020, 10(2), 112.
  • Gao, Q.; Feng, T.; Huang, D.; Lin, P.; Yan, W.; Wu, Y.; Ye, Z.; Ji, J.; Li, P.; Huang, W.;; et al. Antibacterial and hydroxyapatite-forming coating for biomedical implants based on polypeptide-functionalized Titania nanospikes. Biomater. Sci. 2020, 8, 278–289. DOI: 10.1039/C9BM01396B.
  • Murugan, N.; Sundaramurthy, A.; Chen, S.-M.; Ashok, K. Graphene oxide/oxidized carbon nanofiber/mineralized hydroxyapatite based hybrid composite for biomedical applications. Mater. Res. Exp. 2017, 4124005. DOI: 10.1088/2053-1591/aa9ddd .
  • Sidiqa, A. N.; Hardiansyah, A.; Chaldun, E. R.; Endro, H. Preparation and characterization zirconium oxide-doped hydroxyapatite. Key Eng. Mater. 2020, 829, 54–59. DOI: 10.4028/www.scientific.net/KEM.829.54.
  • Koutsopoulos, S.;. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J. Biomed. Mater. Res. 2002, 62, 600–612. DOI: 10.1002/jbm.10280.
  • Xu, S.; Xiaoyu, Y.; Yuan, S.; Minhua, T.; Jian, L; Aidi, N; Xing, L; et al. Morphology improvement of sandblasted and acid-etched Titanium surface and osteoblast attachment promotion by hydroxyapatite coating, rare metal. Mater. Eng. 2015, 44, 67–72.
  • Mahapatro, A.;. Bio-functional nano-coating on metallic biomaterials. Mater. Sci. Eng. C. 2015, 55, 227–251.
  • Kannan, M. B.;. 13-hydroxyapatite coating on biodegradable magnesium and magnesium-based alloys. In Hydroxyapatite for Biomedical applications; Mucalo, M., Ed.; Woodhead Publishing: Cambridge, England, 2015; pp 289–306.
  • Barabas, R.; Aliva, E. D. S.; Ladeira, L. O.; Antonio, L. M.; Totos, R; Simedru, D.; Bizo, L.; Cadar, O. Graphene oxides/carbon nanotubes-hydroxyapatite nanocomposites for Biomedical applications. Arabian J. Sci. Eng. 2020, 45, 219–227. DOI: 10.1007/s13369-019-04058-4.
  • Alioui, H.; Bouras, O.; Bollinger, J.-C. Toward an Efficient Antibacterial Agent: Zn- and Mg-doped Hydroxyapatite Nanopowders. J. Environ. Sci. Heal. A. 2018, 4, 315–327.
  • Kumar, V. A.; Raju, P. R. M.; Ramanaiah, N.; Siriyala, R. The Effect of Zr2O and TiO2 reinforcing agent on the microstructure and mechanical properties of hydroxyapatite nanocomposites. Adv. Appl. Mech. Eng. 2020, 699-712.
  • Khorasani, A. M.; Ian, G.; Moshe, G.; Junior, N.; Guy, L. Machinability of metallic and ceramic biomaterials: a review. Sci. Adv. Mater. 2016, 8, 1491–1511. DOI: 10.1166/sam.2016.2783.
  • Alves, A. C.; Thibeaux, R.; Toptan, F.; Pinto, A. M. P.; Ponthliaux, P.; David, B. Influence of macroporosity on NIH/3T3 adhesion, proliferation and osteogenic differentiation of MC3T3-E1 over Bio-functionalized highly porous titanium implant material. J. Biomed. Mater. Res. B. 2018, 107, 73–85. DOI: 10.1002/jbm.b.34096.
  • Dorozhkin, S. V.;. Calcium Orthophosphate coating on magnesium and its biodegradable alloys. Acta Biomater. 2014, 10, 2919–2924. DOI: 10.1016/j.actbio.2014.02.026.
  • Zadpoor, A. A.;. Current trends in metallic orthopedic biomaterials: from additive manufacturing to bio-functionalization, infection prevention, and beyond. Int. J. Mol. Sci. 2018, 19(9), 2684. DOI: 10.3390/ijms19092684.
  • Liu, J.-X.; Yang, D.-Z.; Shi, F.; Cai, Y.-J. Sol-gel deposited TiO2 film on NiTi surgical alloy for biocompatible improvement. Thin Solid Films. 2003, 429, 225–230. DOI: 10.1016/S0040-6090(03)00146-9.
  • Kohn, D. H.;. Metals in medical applications. Curr. Opin. Solid State Mater. Sci. 1998, 3, 309–316. DOI: 10.1016/S1359-0286(98)80107-1.
  • Huynh, V.; Ngo, N. K.; Golden, T. D. Surface activation and pretreatment for biocompatible metals and alloys used in biomedical applications. Int. J. Biomater. 2019, 2019, 1–21. DOI: doi.10.1155/2019/3806504.
  • Khan, M. M.; Nemati, A.; Rahman, Z. U.; Rahman, U. H.; Asgar, H.; Haider, W. Recent advancements in bulk metallic glasses and their applications: a review. Crit. Rev. Solid State Mater. Sci. 2018, 43, 233–268. DOI: 10.1080/10408436.2017.1358149.
  • Devgan, S.; Sidhu, S. S. Evolution of surface modification trends in bone related biomaterials: a review. Mater. Chem. Phys. 2019, 33, 68–78. DOI: 10.1016/j.matchemphys.2019.05.039.
  • Safavi, M. S.; Etminanfar, M. A review on the prevalent fabrication methods, microstructural, mechanical properties, and corrosion resistance of nanostructured hydroxyapatite containing bilayer and multilayer coatings used in Biomedical applications. J. Ultrafine Grained Nanostruct. 2019, 52, 1–17.
  • Sasikumar, Y.; Indira, K.; Rajendran, N. Surface modification methods for Titanium and Its Alloys and Their Corrosion Behavior in Biological Environment. Rev. J. Bio Tribo Corros. 2019, 36. doi:10.1007/s40735-019-0229-5.
  • Aliyu, A. A. A.; A Rani, A. M. B.; Ginta, T. L.; Prakash, C., Axinte, E; Razak, M. A.; Ali, S. A review of additive mixed-electric discharge machining: current status and future perspectives for surface modification of Biomedical implants. Adv. Mater. Sci. Eng. 2017, 2017, pages 23.
  • Gill, A. S.; Kumar, S. Surface roughness and microhardness evaluation for EDM with Cu–Mn powder metallurgy tool. Mater. Manuf. Process. 2016, 31, 514–521. DOI: 10.1080/10426914.2015.1070412.
  • Ekmekci, B.; Erso¨, Z. Y. How suspended particles affect surface morphology in powder mixed electrical discharge machining (PMEDM). Metall. Mater. Trans. B. 2012, 43, 1138–1148. DOI: 10.1007/s11663-012-9700-0.
  • Devgan, S.; Sidhu, S. S. Potential of electrical discharge treatment incorporating MWCNTs to enhance the corrosion performance of the β-titanium alloy. Appl. Phys. A. 2020, 211. doi:10.1007/s00339-020-3391-1.
  • Janmanee, P.; Muttamara, A. Surface modification of Tungsten Carbide by electrical discharge coating (EDC) using a titanium powder suspension. Appl. Surf. Sci. 2012, 258, 7255–7265. DOI: 10.1016/j.apsusc.2012.03.054.
  • Gulcan, O.; Uslan, I.; Usta, Y.; C¸ Ogun, C. Performance and surface alloying characteristics of Cu–Cr and Cu–Mo powder metal tool electrodes in electrical discharge machining. Mach. Sci. Technol. 2016, 20, 523–546. DOI: 10.1080/10910344.2016.1191031.
  • Kruth, J.-P.; Stevens, L.; Froyen, L.; Lauwers, B. Study of the white layer of a surface machined by die-sinking electro-discharge machining. CIRP Ann. -Manuf. Technol. 1995, 44, 169–172. DOI: 10.1016/S0007-8506(07)62299-9.
  • Mandal, P.; Mondal, S. C. Surface characteristics of mild steel using EDM with Cu-MWCNT composite electrode. Mater. Manuf. Process. 2019, 34, 1326–1332. DOI: 10.1080/10426914.2019.1605179.
  • Furutani, K.; Sato, H.; Suzuki, M. Influence of electrical condition on performance of electrical discharge machining suspended in working oil for Titanium Carbide deposition process. Int. J. Adv. Manuf. Technol. 2009, 40, 1093–1101. DOI: 10.1007/s00170-008-1420-x.
  • Aliyu, A. A. A.; Abdul-Rani, A. M.; Rao, T. V. V. L. N.; Axinte, E.; Hastuty, S.; Parameswari, R. P.; Subramaniam, J. R.; Thyagarajan, S. P. Characterization, Adhesion strength and In-vitro cytotoxicity investigation of hydroxyapatite coating synthesized on Zr-based BMG by electro discharge process. Surf. Coat. Technol. 2019, 370, 213–226. DOI: 10.1016/j.surfcoat.2019.04.084.
  • Sun, L.; Berndt, C. C.; Gross, K. A.; Kucuk, A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J. Biomed. Mater. Res. 2001, 58, 570–592. DOI: 10.1002/jbm.1056.
  • Baoe, L.; Xia, X.; Guo, M.; Jiang, Y., Li, Y.; Zhang, Z.; Liu, S.; Li, H.; Liang, C.; Wang, H. Biological and antibacterial properties of the micro-structured hydroxyapatite/chitosan coating on Titanium. Sci. Rep. 2019, 9(1), 14052.
  • Abbasizadeh, N.; Rezayan, A. H.; Nourmohammadi, J.; Narbal, M. K. HHC-36 antimicrobial peptide loading on silk fibroin (Sf)/hydroxyapatite (HA) nanofibrous-coated Titanium for the enhancement of Osteoblast and bactericidal functions. Int. J. Poly. Mater. Poly. Biomater. 2019, 69, 629-639.
  • Tapsir, Z.; Jamaludin, F. H.; Murphy, B. P.; Saldin, S. Immobilisation of Hydroxyapatite-collagen on Polydopamine grafted stainless steel 316L: coating adhesion and in Vitro cells evaluation. J. Biomater. Appl. 2017, 32, 987–995. DOI: 10.1177/0885328217744081.
  • Ekmekci, N.; Ekmekci, B. Electrical discharge machining of Ti6Al4V in hydroxyapatite powder mixed dielectric liquid. Mater. Manuf. Process. 2016, 31, 1663–1670. DOI: 10.1080/10426914.2015.1090591.
  • Prakash, C.; Uddin, M. S. Surface modification of β-phase Ti implant by hydroxyapatite electric discharge machining to enhance the corrosion resistance and In-vitro bioactivity. Surf. Coat. Technol. 2017, 326, 134–145. DOI: 10.1016/j.surfcoat.2017.07.040.
  • Sukhodub, L. B.; Sukhodub, L. F.; Kumeda, M. O.; Pryiutskyy, Y. I.; Pogorielov, M. V.; Evstigneev, M. P.; Kostjukov, V. V.; Strutynska, N. Y.; Vovchenko, L. L.; Khrapatiy, S. V., et al. Single-walled carbon nanotubes loaded hydroxyapatite-alginate beads with enhanced mechanical properties and sustained drug release ability. Prog. Biomater. 2020, DOI:10.1007/s40204-020-00127-2.
  • Saxena, V.; Hasan, A.; Pandey, L. M. Effect of Zn/ZnO integration with hydroxyapatite: a review. Mater. Technol. 2018, 33, 79–92. DOI: 10.1080/10667857.2017.1377972.
  • Farrokhi-Rad, M.; Beygi Khosrowshahi, Y.; Hassannejad, H.; Nouri, A.; Hosseini, M. Preparation and characterization of hydroxyapatite/titania nanocomposite coatings on titanium by electrophoretic deposition. Mater. Res. Exp. 2018, 5.
  • Shirdar, M. R.; Taheri, M. M.; Sudin, I.; Shafaghat, A.; Keyvanfar, A.; Majid, M. Z. A. In situ synthesis of hydroxyapatite-grafted titanium nanotube composite. J. Exp. Nanosci. 2016, 11, 816–822. DOI: 10.1080/17458080.2016.1169446.
  • Ana-lulia Bita, G. E.; Niculescu, S. M.; Ciuca, I.; Vasile, E.; Antoniac, I. Adhesion evaluation of different bioceramics coatings on Mg-Ca Alloys for biomedical applications. J. Adhes. Sci. Technol. 2016(30), 1968-1983.
  • Ding, S. J.; Ju, C. P.; Lin, J. H. C. Immersion Behavior of RF Magnetron-assisted Sputtered Hydroxyapatite/titanium Coating in Simulated Body Fluid. J. Biomed. Mater. Res. 1999, 47, 551. DOI: 10.1002/(SICI)1097-4636(19991215)47:4<551::AID-JBM12>3.0.CO;2-C.
  • Sopcak, T.; Medvecky, L.; Zagyva, T.; Dzupon, M.; Balko, J.; Balázsi, K.; Balázsi, C. Characterization and adhesion strength of porous electrosprayed polymer-hydroxyapatite composite coatings. Resol. Discov. 2018, 3(2), 17–23. DOI: 10.1556/2051.2018.00057.
  • Faria, D.; Abreu, C. S.; Buciumeanu, M.; Dourado, N.; Carvalho, O., Silva, F. S.; Miranda, G. Ti6Al4V laser surface preparation and functionalization using hydroxyapatite for biomedical applications. J. Biomed. Mater. Res. 2017, DOI: 10.1002/jbm.b.33964.
  • Packham, D. E. The mechanical theory of adhesion. In Handbook of Adhes. Technol., 2003; pp 69–93. Springer: Verlag Berlin Heidelberg.
  • Packham, D. E. Surface energy, surface topography and adhesion. Int. J. Adhes. Adhes. 2003, 23, 437–448. DOI: 10.1016/S0143-7496(03)00068-X.
  • Qu, J.; Oyuang, L.; Kuo, C.; Martin, D. C. Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films. Acta Biomater. 2016, 31, 114–121. DOI: 10.1016/j.actbio.2015.11.018.
  • Qiao, H.; Song, G.; Huang, Y.; Yang, H.; Han, S.; Zhang, X.; Wang, Z.; Ma, J.; Bu, X.; Fu, L., et al. Si, Sr, Ag Co-doped hydroxyapatite/TiO coating: enhancement of its antibacterial activity and osteoinductivity. RSC Adv. 2019, 9(24), 13348–13364.
  • Yin, X.; Bai, Y.; Zhou, S. J.; Wen, M.; Bai, X.; Chen, W. Solubility, mechanical and biological properties of fluoridated hydroxyapatite/calcium silicate gradient coatings for orthopedic and dental applications. J. Therm. Spray. Technol. 2020, 29, 471–488. DOI: 10.1007/s11666-020-00981-3.
  • Ghaleh, H. M.; Allafi, J. K.; Horandghadim, N.; Kelkhosravani, P.; Ghasem, M. Structural characterization, mechanical, and electrochemical studies of hydroxyapatite‐titanium composite coating fabricated using electrophoretic deposition and reaction bonding process. J. Biomed. Mater. Res. 2019, 1-12, DOI: 10.1002./jbm.b.34551.
  • Wang, Z. C.; Chen, F.; Huang, L. M.; Lin, C. J. Electrophoretic deposition and characterization of nano-sized hydroxyapatite particles. J. Mater. Sci. 2005, 40(18), 4955. DOI: 10.1007/s10853-005-3871-x.
  • Asri, R. I. M.; Harun, W. S. W.; Hassan, M. A.; Ghani, S. A. C.; Buyong, Z. A review of hydroxyapatite-based coating techniques: sol-gel and electrochemical depositions on biocompatible materials. J. Mech. Behav. Biomed. Mater. 2016, 57, 95–108. DOI: 10.1016/j.jmbbm.2015.11.031.
  • Vandrovcova, M.; Bacakova, L. Adhesion, growth and differentiation of osteoblasts on surface-modified materials developed for bone implants. Phys. Res. 2011, 60, 403–417. DOI: 10.33549/physiolres.932045.
  • Vagaska, B.; Bacakova, L.; Filova, E., Balik, K. Osteogenic cells on bio-inspired materials for bone tissue engineering. Phys. Res. 2010, 59, 309–322.
  • Meshramkar, R.; Shetty, P.; Aishwarya Nayak, G. V. Anehosur. Surface treatment of Zirconium implant, its surface roughness and its effect on osseointegration: a review. Int. J. Innov. Res. Med. Sci. 2019, 4, 343–345.
  • Albrektsson, T.; Wennerberg, A. Oral implant surfaces: part 1 - review focusing on topographic and chemical properties of different surfaces and in Vivo responses to them. Int. J. Prosth. 2004, 17, 536–543.
  • Yang, T.-S.; Huang, M.-S.; Wang, M.-S.; Lin, M.-H.; Tsai, M.-Y.; Wang Wang, P.-Y. Mao-Sheng Wang, et. al. Effect of electric discharge on formation of nanoporous biocompatible layer on Ti-6Al-4V alloys. Implant Dent. 2013, 22, 375–380. DOI: 10.1097/ID.0b013e31829a170a.
  • Sul, Y. T.; Johansson, C.; Wennerberg, A., Cho, L.-R.; Chang, B.-S.; Albrektsson, T. Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure. Int. J. Oral Max Implant. 2005, 20, 349–359.
  • Prakash, C.; Kansal, H. K.; pabla, B. S.; Puri, S. On the influence of nanoporous layer fabricated by PMEDM on β-Ti implant: biological and computational evaluation of bone-implant interface. Mater. Today, Proceeding. 2015, 4, 2298-2307.
  • Peng, P.-W.; Ou, K.-L.; Lin, H.-C.; Pan, Y.-N.; Wang, C.-H. Effect of electrical-discharging on formation of nanoporous biocompatible layer on titanium. J. Alloys Compd. 2010, 492, 625–630. DOI: 10.1016/j.jallcom.2009.11.197.
  • Schnieders, J.; Gbureck, U.; Vorndran, E.; Schossig, M.; Kissel, T. The effect of porosity on drug release kinetics from vancomycin microsphere/calcium phosphate cement composite. J. Biomed. Mater. Res. Part B. 2011, 99, 391–398. DOI: 10.1002/jbm.b.31910.
  • Mai, C.; Hocheng, H.; Huang., S. Advantage of carbon nanotubes in electrical discharge machining. Int. J. Adv. Manuf. Technol. 2012, 59, 111–117. DOI: 10.1007/s00170-011-3476-2.
  • Ullah, I.; Siddiqui, M. A.; Liu, H.; Kunle, S.; Zhang, J.; Zhang, S.; Ren, L.; Yang, K.. Mechanical, biological, and antibacterial characteristics of plasma-sprayed (Sr, Zn) substituted hydroxyapatite coating. ACS Biomater. Sci. Eng. 2020, 6(3), 1355–1366.
  • Fauchais, P.; Vardelle, A. Innovative and emerging processes in plasma spraying: from micro to nano structured coatings. J. Phys. D: Appl. Phys. 2011, 44, 194011. DOI: 10.1088/0022-3727/44/19/194011.
  • Aruna, S. T. R.; Shilpa, M.; Lakshmi, R. V.; Balaji, N.; Kavitha, V.; Gnanamani, A. Plasma sprayed hydroxyapatite bioceramic coatings from coprecipitation synthesized powder: preparation, characterization and in Vitro studies. Trans. Indian Ceram. Soc. 2018, 77(2), 90–99. DOI: 10.1080/0371750X.2018.1465358.
  • Heimann, R. B. Plasma-sprayed hydroxyapatite-based coatings: chemical, mechanical, microstructural and biomedical properties. J. Therm. Spray. Technol. 2016, 25, 827–850. DOI: 10.1007/s11666-016-0421-9.
  • Saber-Samandari, S.; Baradaran, S.; Nasiri-Tabrizi, B.; Alamara, K.; Basirun, W. J. Microstructural evolution and micromechanical properties of thermally sprayed hydroxyapatite coating. Adv. Appl. Ceram. 2018, 117, 452–460. DOI: 10.1080/17436753.2018.1495895.
  • Huang, N.; Leng, Y.; Yang, P.; Wang, J.; Chen, J.; Wan, G. Biomedical applications of plasma and ion beam processing. J. Vac. Soc. Jpn. 2008, 51, 81–92. DOI: 10.3131/jvsj2.51.81.
  • Anjaneyulu, U.; Priyadarshini, B.; Arul Xavier, S.; Chellappa, M.; Getha, M.; Vijayalakshmi, U. Preparation and characterization of Sol-gel-derived hydroxyapatite nanoparticles and its coatings grade Ti-6Al-4V alloy for biomedical applications. Mater. Technol. 2017, 32, 800–814. DOI: 10.1080/10667857.2017.1364476.
  • Catauro, M.; Barrino, F.; Bianco, I.; Piccolella, S.; Pacifico, S. Use of Sol-gel method for the preparation of coatings of titanium substrates with hydroxyapatite for biomedical application. Coat. 2020, 10,3, 203. DOI: 10.3390/coatings10030203.
  • Qu, H.; Wei, M. Improvement of bonding strength between biomimetic apatite coating and substrate. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 84, 436–443. DOI: 10.1002/jbm.b.30889.
  • Taherian, M. Synthesis of hydroxyapatite-bioglass nanocomposite using modified Sol-gel method. J. Environ. Friendly Mater. 2018, 2, 23–25.
  • Fadli, A.; Saputra, E.; Komalasari, A. Fabrication of porous hydroxyapatite/chitosan composite bodies through dip-coating method. IOP conference. Mater. Sci. Eng., West Sumatera, Indonesia; 2018, 543.
  • Baptista, R.; Gadelha, D.; Bandeira, M.; Arteiro, D.; Delgado, M. I.; Ferro, A. C.; Guedes, M. Characterization of titanium-hydroxyapatite biocomposites processed by dip coating. Bull. Mater. Sci. 2016, 39, 263–272. DOI: 10.1007/s12034-015-1122-6.
  • Asri, R.; Harun, W.; Hasan, M.; Ghani, S.; Buyong, Z. A review of hydroxyapatite based coating techniques: sol-gel and electrochemical depositions on biocompatible metals. J. Mech. Behav. Biomed. Mater. 2016, 57, 95–108.
  • Piettrzyk, B.; Kucharski, D.; Kolodziejczyk, L.; Miszczak, S.; Fijalkowski, M. Comparison of mechanical and barrier properties of Al2O3/TO2/ZrO2 layers in oxide-hydroxyapatite sandwich composite coatings deposited by Sol-gel method on Ti6Al4V alloy. Mater. 2020, 13, 502. DOI: 10.3390/ma13030502.
  • Wu, M. S.; Huang, C. Y.; Lin, K. H. Electrophoretic deposition of nickel oxide electrode for high rate electrochemical capacitors. J. Power Sources. 2009, 186, 557–564. DOI: 10.1016/j.jpowsour.2008.10.049.
  • Shao, Z.; Xia, J.; Zhang, Y.; Jiang, H.; Guangyu, L. Preparation of calcium phosphate/chitosan membranes by electrochemical deposition technique. Mater. Manuf. Process. 2016, 31, 53–61. DOI: 10.1080/10426914.2015.1037920.
  • Jin, J.; Zhang, W.; Li, H. A composite coating formed on AZ91D magnesium alloy by micro-arc oxidation and electrochemical deposition. Mater. Technol. 2017, 32, 707–715. DOI: 10.1080/10667857.2016.1231250.
  • Saadati, A.; Hesarikla, H.; Nourani, M. R.; Taheri, R. A. Electrophoretic deposition of hydroxyapatite coating on biodegradable Mg–4Zn–4Sn–0.6Ca–0.5Mn alloy. Surf. Eng. 2019. DOI: 10.1080/02670844.2019.1661145.
  • Adekunle, S.; Bushroa, A. R.; Khusumawan, M.; Sopyan, L.; Jefrey, W.; Ladan, M. Preparation, scratch adhesion and anti-corrosion performance of TiO2-MgO-BHA coating on Ti6Al4V implant by plasma electrolytic oxidation technique. J. Adhes. Sci. Technol. 2018, 32, 91–102. DOI: 10.1080/01694243.2017.1341772.
  • Xie, Z. J.; Mai, Y. J.; Lian, W. Q.; He, S. L.; Jie, X. H. Titanium Carbide coating with enhanced tribological properties obtained by EDC using partially sintered titanium electrodes and graphite powder mixed dielectric. Surf. Coat. Technol. 2016, 300, 50–57. DOI: 10.1016/j.surfcoat.2016.04.080.
  • Ou, S. F.; Wang, C. Y. Effects of bioceramics particles in dielectric of powder-mixed electrical discharge machining on machining and surface characteristics of titanium alloys. J. Mater. Process. Technol. 2017, 245, 70–79. DOI: 10.1016/j.jmatprotec.2017.02.018.
  • Shih-Fu, O.; Wang, C.-Y. Fabrication of a hydroxyapatite-containing coating on Ti-Ta alloy by electrical discharge coating and hydrothermal treatment. Surf. Coat. Technol. 2016, 302, 238–243. DOI: 10.1016/j.surfcoat.2016.06.013.
  • Ishizawa, H.; Ogino, M. Hydrothermal precipitation of hydroxyapatite on anodic titanium oxide films containing Ca and P. J. Mater. Sci. 1999, 34, 5893–5898. DOI: 10.1023/A:1004739108534.
  • Bains, P. S.; Bahraminasab, M.; Sidhu, S. S.; Singh, G. On the machinability and the properties of Ti-6Al-4V biomaterial with n-HAP Powder-mixed ED machining. J. Eng. Med. 2019. DOI: doi.10.1177/0954411919891887.
  • Singh, G.; Sidhu, S. S.; Bains, P. S., et. al. Improving microhardness and wear resistance of 316L by TiO2 powder mixed electro discharge treatment. Mater. Res. Express. 2019,
  • Ryan, G.; Pandit, A.; Apatsidis, D. P. Fabrication methods of porous metals for use in orthopedic applications. Biomater. 2006, 27, 2651–2670. DOI: 10.1016/j.biomaterials.2005.12.002.
  • OPOZ, T. T.; Yasar, H.; Murphy, M. F.; Ekmekci, N.; Ekmekci, B. Ti6Al4V surface modification by hydroxyapatite powder mixed electrical discharge machining for medical applications. Int. J. Adv. Eng. Pure Sci. 2019, (Special issue–1). DOI: 10.7240/jeps.450383.
  • Prakash, C.; Kansal, H. K.; Pabla, B. S.; Puri, S. Processing and characterization of novel biomimetic nanoporous bioceramic surface on b-Ti implant by powder mixed electric discharge machining. j. Mater. Eng. Perf. 2015, 16, 41006.
  • Aliyu, A. A. A.; Ginta, T. L.; Rao, T. V. V. L. N. Nagarajan Seivamurugan, Sandipan Roy. Hydroxyapatite mixed-electro discharge formation of bioceramic lakargiite (Cazro3) on Zr-Cu-Ni-Ti for orthopedic application. Mater. Manuf. Process. 2018. DOI: 10.1080/10426914.2018.1512122.
  • Prakash, C.; Sunpreet, S.; Pabla, B. S.; Uddin, M. S. Synthesis, characterization, corrosion and bioactivity investigation of nano-ha coating deposited on biodegradable Mg-Zn-Mn alloy. Surf. Coat. Technol. 2018, 346, 9–18. DOI: 10.1016/j.surfcoat.2018.04.035.
  • Lamichhane, Y.; Gurpreet Singh, A. S.; Bhui, P. M.; Kumar, P. Bikram Thapa.Surface modification of 316L SS with HAp nano-particles using PMEDM for enhanced biocompatibility. Mater. Today: Proc. 2019, 15, 336–343.
  • Singh, G.; Lamichhane, Y.; Bhui, A. S.; Sidhu, S. S.; Bains, P. S.; Mukhiya, P. Surface morphology and microhardness behavior of 316L in HAP-PMEDM. Facta Universitatis. 2019, 17, 445–454. DOI: 10.22190/FUME190510040S.
  • Talla, G.; Gangopadhayay, S.; Biswas, C. K. State of the art in powder mixed electric discharge machining: a review. J. Manuf. Eng. 2016, 231(14), 1–16.
  • Priyadarshini, B.; Rama, M.; Chetan, U. V. Bioactive coating as a surface modification technique for biocompatible metallic implants: a review. J. Asian Ceram. Soc. 2019, 7, 397–406. DOI: 10.1080/21870764.2019.1669861.
  • Duerig, T. W.; Melton, K. N.; Stockel, D.; Wayman, C. M. Engineering aspects of shape memory alloys. Butterworth-Heinemann, London. 1990, 21-35.
  • Kumar, K.; Gill, R. S.; Batra, U. Challenges and opportunities for biodegradable magnesium alloy implants. Mater. Technol. 2018, 33, 153–172. DOI: 10.1080/10667857.2017.1377973.
  • Geesink, R. G. T.; Hoefnagels, N. H. M. Six-year results of hydroxyapatite coated total hip replacement. J. Bone Jt. Surg. 1995, 77(4), 534-47.
  • Geesink, R. G. T. Hydroxyapatite-coated total hip prostheses. Two-year clinical and Roentgenographic results of 100 cases. Clin. Orthp. Relat. Res. 1990, 261, 39–58.
  • MaNally, S. A.; Shepperd, H. A. N.; Mann, C. V.; Walczak, J. P. The results at nine to twelve years of the use of a hydroxyapatite-coated femoral stem. J. Bone Jt. Surg. 2000, 82, 378–382. DOI: 10.1302/0301-620X.82B3.0820378.
  • D. Antonio, J. A.; Capello, W. N.; Manley, M. T.; Geesink, R. Hydroxyapatite femoral stems for total hip arthroplasty. Clin. Orthop. Relat. Res. 2001, 393, 101–111. DOI: 10.1097/00003086-200112000-00012.
  • Geesink, R. G. T.;. Osteoconductive coating for total joint arthroplasty. Clin. Orthop. Relat. Res. 2002, 395, 53–65. DOI: 10.1097/00003086-200202000-00007.
  • Havelin, L. I.; Engesaeter, L. B.; Espehaug, B.; Furnes, O.; Lie, S. A.; Vollset, S. E. The Norwegian Arthroplasty register, 11 Years and 73,000 Arthroplasties. Acta Orthop. Scand. 2000, 71, 337–353. DOI: 10.1080/000164700317393321.
  • Bajpai, P. K.; Benhuzzi, H. A. Ceramic systems for long term delivery of chemicals and biologicals. J. Biomed. Mater. Res. 1988, 22, 1245–1266. DOI: 10.1002/jbm.820221212.
  • Barroug, A.; Glimeher, M. J. Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in Vitro. J. Orthop. Res. 2002, 20, 274–280. DOI: 10.1016/S0736-0266(01)00105-X.
  • LeGeros, R. Z. Properties of osteoconductive biomaterials: calcium phosphates. Clin. Orthop. Relat. Res. 2002, 395, 81–98. DOI: 10.1097/00003086-200202000-00009.
  • Qadir, M.; Yuncang, L.; Munir, K.; Wen, C. Calcium phosphate-based composite coating by Micro-Arc Oxidation (MAO) for biomedical application: a review. Crit. Rev. Solid State. 2018, 43, 392–416. DOI: 10.1080/10408436.2017.1358148.
  • Adamovic, D.; Ristic, B.; Zivic, F. Review of Existing biomaterials—method of material selection for specific applications in orthopedics. Biomater. Clin. Prac. 2017, 47-99.
  • Levingstone, T. J.; Optimisation of Plasma Sprayed Hydroxyapatite Coatings in School of Mechanical and Manufacturing Engineering. Dublin City University: Dublin., 2008.
  • Mansur, M. R. Deposition and characterization of a coating from calcium phosphate and titanium alloy on austenitic stainless steel. Faculty of Engineering and Industrial Science, Swinburne University of Technology, Australia. 2014.
  • Ahmed, I.; Bergman, T. L. Optimization of plasma spray processing parameters for deposition of nanostructured powders for coating formation. J. Fluid. Eng. Trans. ASME. 2006, 128, 394–401. DOI: 10.1115/1.2170131.
  • Tsui, Y. C.; Doyle, C.; Clyne, T. W. Plasma sprayed hydroxyapatite coatings on titanium substrates part 2: optimization of coating properties. Biomater. 1998, 19, 2031–2043. DOI: 10.1016/S0142-9612(98)00104-5.
  • Devgan, S.; Sidhu, S. S. Surface modification of β-type titanium with multi walled CNTs/HAp powder mixed electro discharge treatment process. Mater. Chem. Phys. 2020, 239, 122005. DOI: 10.1016/j.matchemphys.2019.122005.
  • Lamichhane, Y.; Gurpreet Singh, Amandeep S. Bhui, Prabin Mukhaiya, et. al. Surface Modification of 316L SS with HAp Nano-particles using PMEDM for enhanced biocompatibility. Mater. Today: Proc. 2019, 15, 336–343.
  • Rafieeda, A. R.; Bushroa, A. R.; Nasiri Tabrizi, B.; Baradaran, S.; Shahtalebi, S.; Khanahmadi, S.; Afshar-Mohajer, M.; Vadivelu, J.; Yusof, F.; Basirun, W. J., et al. In-vitro bioassay of electrophoretically deposited hydroxyapatite–zirconia nanocomposite coating on Ti–6Al–7Nb implant. Adv. Appl. Ceram. 2017, 116(6), 293–306.
  • Eliaz, N.; Metoki, N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Mater. 2017, 10, 334. DOI: 10.3390/ma10040334.
  • Eliaz, N.; Sridhar, T.; Kamachi Mudali, U.; Raj, B. Electrochemical and electrophoretic deposition of hydroxyapatite for orthopedic applications. Surf. Eng. 2005, 21, 238–242. DOI: 10.1179/174329405X50091.
  • Salman, S. A.; Kuroda, K.; Okido, M. Preparation and characterization of hydroxyapatite coating on AZ31 alloy for implant applications. Bioinorg. Chem. Appl. 2013, 2013, 175756. DOI: 10.1155/2013/175756.
  • Suo, L.; Jiang, N.; Wang, Y.; Wang, P.; Chen, J., Pei, X.; Wang, J.; Wan, Q. The enhancement of osseointegration using a graphene oxide/chitosan/hydroxyapatite composite coating on titanium fabricated by electrophoretic deposition. J. Biomed. Mater. Res. Part B. 2018, 107(3), 635-645.
  • Vijayalakshmi, U.; Chellappa, M.; Anjaneyulu, U.; Manivasagam, G.; Sethu, S. Influence of coating parameter and sintering atmosphere on the corrosion resistance behavior of electrophoretically deposited composite coatings. Mater. Manuf. Process. 2016, 31, 95–106. DOI: 10.1080/10426914.2015.1070424.
  • Asmawi, R.; Ibrahim, M. H.; Amin, A. M.; Mustafa, N.; Noranai, Z. Development of bioactive ceramic coating on titanium alloy substrate for biomedical application using dip coating method. IOP conference: Mater. Sci. Eng., Melaka, Malaysia; 2017, 226.
  • Catarou, M.; Papale, F.; Piccirilo, G.; Bollino, F. PEG‐based organic–inorganic hybrid coatings prepared by the Sol–gel dip‐coating process for biomedical applications. Poly. Eng. Sci. 2017, 478-484.
  • T., F.; Sun, J.-M.; Alajmi, Z.; F., W. Sol-gel preparation, corrosion resistance and hydrophilicity of Ta-containing TiO2 films on Ti6Al4V alloy. Trans. Nonferrous Met. Soc. China. 2015, 25, 471–476. DOI: 10.1016/S1003-6326(15)63626-3.
  • El Hadad, A. A.; Peon, E.; Federico, R.; García-Galván, F.; Barranco, V.; Parra, J.; Jiménez-Morales, A.; Galván, J. Biocompatibility and corrosion protection behaviour of hydroxyapatite Sol-Gel-derived coatings on Ti6Al4V alloy. Materials. 2017, 10(2), 94. DOI: 10.3390/ma10020094.
  • Kaur, G.; Pickrell, G.; Sriranganathan, N.; Kumar, V.; Homa, D. Review and the state of the art: sol–gel and melt quenched bioactive glasses for tissue engineering. J. Biomed. Mater. Res. 2016, 104(6), 1248–1275. DOI: 10.1002/jbm.b.33443.
  • Pradheebha, S.; Unnikanna, R.; Bathe, R. N.; Padmanabham, G.; Subasri., R. Effect of plasma pretreatment on durability of sol-gel superhydrophobic coatings on laser modified stainless steel substrates. J. Adhes. Sci. Technol. 2018, 32, 2394–2404. DOI: 10.1080/01694243.2018.1482735.
  • Dorozhkin, S. V. Calcium orthophosphate deposits: preparation, properties and biomedical applications. Mater. Sci. Manuf. C. 2015, 55, 272–326. DOI: 10.1016/j.msec.2015.05.033.
  • Das, A.; Shukla, M. Surface morphology and in Vitro bioactivity of biocompatible hydroxyapatite coatings on medical grade S31254 steel by RF magnetron sputtering deposition. Int. J. Surf. Eng. Coat. 2017, 95, 276–281.
  • Viadescu, A.; cotrut, C. M.; Azem, F. A.; Bramowicz, M.; Pana, L., Braic, V.; Birlik, I.; Kiss, A.; Braic, M.; Abdulgader, R.; Boysen, R.; Kulesza, S.; Monsees, T.K. Sputtered Si and Mg doped hydroxyapatite for biomedical applications. Biomed. Mater. 2018, 13(2).
  • Ren, J.; Zhao, D.; Fei, Q.; Wang, Y.; Chen, Y. Heat and hydrothermal treatment on the microstructure evolution of plasma sprayed hydroxyapatite coatings reinforced with graphene nanoplatelets. Preprints. 2018. DOI: 10.20944/preprints201811.0553.v1.
  • Zhou, S.-J.; Bai, Y.; Wen, M.; Chen, W.-D. Suspension plasma-sprayed fluoridated hydroxyapatite/calcium silicate composite coatings for biomedical applications. J. Therm. Spray. Technol. 2019, 28, 1025–1038. DOI: 10.1007/s11666-019-00872-2.
  • Laura Barillas, J. M.; Sesin, C. Advancing in the quest for smarter implants: a bioactive and antibacterial plasma sprayed coating on biocompatible polymer. J. Eng. Med. Dev. 2017, 1.
  • Anukrishna Eratt, P.; Thakur, K.; Balasubramanian, K. Development of highly porous, electrostatic force assisted nanofiber fabrication for biological applications. Int. J. Poly Mater. Poly. Biomater. 2020, 69, 477–508. DOI: 10.1080/00914037.2019.1581197.
  • Bastan, F. E. Fabrication and characterization of an electrostatically bonded PEEK‐ Hydroxyapatite composites for biomedical applications. J. Biomed. Mater. Res. Part B. 2020, 1-15.
  • Furko, M.; Balazsi, K.; Balazsi, C. Comparative study on preparation and characterization of bioactive coatings for biomedical applications – a review on recent patents and literature. Rev. Adv. Mater. Sci. 2017, 48, 25–51.
  • Wei, G.; Gong, C.; Keke, H.; Wang, Y.; Zhang, Y. Biomimetic hydroxyapatite on graphene supports for biomedical applications: a review. Nanomater. 2019, 10, 1435. DOI: 10.3390/nano9101435.
  • Xie, C.; Lu, X.; Han, L.; Jielong, J.; Wang, Z.; Jiang, L.; Wang, K.; Zhang, H.; Ren, F.; Tang, Y., et al. Biomimetic mineralized hierarchical graphene oxide/chitosan scaffolds with adsorbability for immobilization of nanoparticles for biomedical applications. ACS Appl. Mater. Interfaces. 2016, 8(3), 1707–1717.
  • Reddy, R.; Reddy, N. Biomimetic approaches for tissue engineering. J. Biomater. Sci. Poly. Edition. 2018(29), 1667-1685.
  • Hassanin, H.; Al-Kinani, A. A.; Eishaer, A.; Polycarpou, E.; El-Sayed, M. A.; Essa, K. Stainless steel with tailored porosity using canister-free hot isostatic pressing for improved osseointegration implants. J. Mater. Chem. B. 2017, 5(47), 9384–9394.
  • Zhao, J.; Xiao, S.; Xiong, L.; Wang, J.; Wang, J. A study on improving mechanical properties of porous ha tissue engineering scaffolds by hot isostatic pressing. Biomater. Mater. 2006, 1, 188-192.
  • Petrovskiy, P.; Sova, A.; Doubenskaia, M.; Smurov, I. Influence of hot isostatic pressing on structure and properties of titanium cold-spray deposits. Int. J. Adv. Manuf. Technol. 2019, 102, 819–827. DOI: 10.1007/s00170-018-03233-5.
  • Villarreal-Gomez, L. J.; Cornejo-Bravo, J. M.; Vera-Graziano, R.; Grande, D. Electrospinning as a powerful technique for biomedical applications: a critically selected survey. J. Biomater. Sci. Poly. Edition. 2016, 27, 157–176. DOI: 10.1080/09205063.2015.1116885.
  • Diez, M.; Kang, M.-H.; Kim, S.-M.; Kim, H.-E.; Song, J. Hydroxyapatite (Ha)/poly-l-lactic acid (PLLA) dual coating on magnesium alloy under deformation for biomedical applications. J. Mater. Sci. Mater. Med. 2016, (4). DOI: 10.1007/s10856-015-5643-8.
  • Sahu, M. R.; Mallik, P. K.; Patnaik, S. C.; Ajit, B. Synthesis and microstructure CaTiO3 coating by Sol-Gel spin-coating process. Int. J. Res. Appl. Sci. Biotechnol. 2018, 5, 6-9.
  • Hadi, R. S.; Jamal Al-deen, H. H.; Radhi, N. S. Investigation the coating of hydroxyapatite on titanium substrate by pulse laser deposition. J. Univ. Babylon Eng. Sci. 2018, 26, 299-311.
  • Liguori, A.; Gualandi, C.; Focarete, M. L.; Biscarini, F.; Bianchi, M. The pulsed electron deposition technique for biomedical applications: a review. Coat. 2020, 10(16).
  • Richard, C.;. Innovative surface treatments of titanium alloys for biomedical applications. Mater. Sci. Forum. 2016, 879, 1570–1575. DOI: 10.4028/www.scientific.net/MSF.879.1570.
  • Aydogan, D. T.; Muhaffel, F.; Killic, M. M.; Acar, O. K.; Cempura, G.; Baydogan, M.; Karaguler, N. G.; Torun Kose, G.; Czyrska-Filemonowicz, A.; Cimenoglu, H.;; et al. Optimization of micro-arc oxidation electrolyte for fabrication of antibacterial coating on titanium. Mater. Technol. 2018, 33(2), 119–126.
  • Chien, C.-S.; Hung, Y.-C.; Hong, T. F.; Wu, C.-C.; Kuo, T.-Y.; Lee, T.-M.; Liao, T.-Y.; Lin, H.-C.; Chuang, C.-H. Preparation and characterization of porous bioceramic layers on pure titanium surfaces obtained by micro-arc oxidation process. Appl. Phys. 2017, 123(3), 204.
  • Melero, H. C.; Sakal, R. T.; Vignatti, C. A.; Benedetti, A. V.; Fernández, J.; Guilemany, J. M.; Suegama, P. H. Corrosion resistance evaluation of HVOF produced hydroxyapatite and TiO2-hydroxyapatite coatings in Hanks‘ solution. Mat. Res. 2018, 21(2). DOI:10.1590/1980-5373-mr-2017-0210
  • Evein, A.; Buyukleblebici, B. Ti6Al4V coating with B2O3 and Al2O3 containing hydroxyapatite by HVOF technique. Int. J. Sci. Technol. 2019(26), 1980-1989.
  • Szabo, A.; Utu, I. D.; Hulka, I.; Bordeasu, I.; Mitelea, I. Microstructure and wear behaviour of Ti reinforced HVOF coating. IOP conference: Mater. Sci. Eng., Romania; 2018, 416.
  • Oliveira, A. R. F.; Sales, W. F.; Raslan, A. A. Titanium Perovskite (Catio3) formation in Ti6Al4V alloy using the electrical discharge machining process for biomedical application. Surf. Coat. Technol. 2016. DOI: 10.1016/j.surfcoat.2016.10.028.
  • Zinelis, S. Surface and elemental alterations of dental alloys induced by electro discharge machining (EDM). Dent. Mater. 2007, 23, 601–607. DOI: 10.1016/j.dental.2006.03.021.
  • Singh, G.; Sidhu, S. S.; Bains, P. S.; Bhui, A. S. Improving microhardness and wear resistance of 316L SS by TiO2 powder mixed electro-discharge treatment. Mater. Res. Exp. 2019, 6, 1-21.
  • Algodi, S. J.; Murray, J. W.; Fay, M. W.; Clare, A. T.; Brown, P. D. Electrical discharge coating of nanostructured TiC–Fe cermets on 304 stainless steel. Surf. Coat. Technol. 2016, 307, 639–649. DOI: 10.1016/j.surfcoat.2016.09.062.
  • Razak, M. A.; Rani, A. M. A.; Saad, N. M.; Littlefair, G.; Aliyu, A. A. Controlling corrosion rate of magnesium alloy using powder mixed electrical discharge machining. IOP conference: Mater. Sci. Eng., University of Lampung, Indonesia; 2018, 44.
  • Nanimina, A. M.; Abdul-Rani, A. M.; Ahmad, F.; Zainuddin, A.; Lo, S. H. J. Effects of electro-discharge machining on aluminum metal matrix composite. J. Appl. Sci., 2011, (11), 1668-1672.
  • Abdul-Rani, A. M.; Nanimina, A. M.; Ginta, T. L.; Razak, M. A. Machined surface quality in nano aluminum mixed electrical discharge machining. Procedia Manuf. 2017, 7, 510–517. DOI: 10.1016/j.promfg.2016.12.061.
  • Nanimina, A. M.; Abdul-Rani, A. M.; Ginta, T. L. Assessment of powder mixed EDM: a review. MATEC Web of Conf. 2014, 13. DOI: 10.1051/matecconf/20141304018.
  • Axinte, E.; Bofu, A.; Wang, Y.; Abdul-Rani, A. M.; Aliyu, A. A. A.; Slătineanu, L.; Nagit, G.; Dodun, O.; Merticaru, V.; Coteata, M. An overview on the conventional and nonconventional methods for manufacturing the metallic glasses. MATEC Web of Conf.. 2017, 112, 03003. DOI: 10.1051/matecconf/201711203003.
  • Aliyu, A. A. A.; Abdul-Rani, A. M.; Ginta, T. L.; Prakash, C.; Axinte, E.; Nizan, R. F. Investigation of nanoporosities fabricated on metallic glass surface by hydroxyapatite mixed EDM for orthopedic applications. Malaysian J. Fundam. Appl. Sci. 2017, 13, 523–528. DOI: 10.11113/mjfas.v13n4-2.830.
  • Abdul-Rani, A. M.; Ginta, T. L.; Prakash, C.; Rao, T. V. V. L. N.; Axinte, E.; Ali, S. synthesis and characterization of bioceramic oxide coating on Zr-Ti-Cu-Ni-Be by electro discharge process. Int. Sci.-Tech. Conf. Manuf., 2019, 518–531.
  • Aliyu, A. A.; Abdul-Rani, A. M.; Ginta, T. L.; Rao, T. V. V. L. N.; Axinte, E.; Ali, S.; Ramli, M. Hydroxyapatite electro discharge coating of Zr-based bulk metallic glass for potential orthopedic applications. Key Eng. Mater. 2019, 796, 123–128. DOI: 10.4028/www.scientific.net/KEM.796.123.
  • Abdul-Rani, A. M.; Aliyu, A. A. A.; Hastuty, S.; Ginta, T. L.; Rao, T. V. V. L. N.; Ali, S. Enhancing surface quality of Zr-Cu-Ni-Ti-Be through hydroxyapatite mixed EDM for potential orthopedic application. AIP Conf. Proceed. 2018, 2035, 080010.
  • El-Wassefy, N. A.; Reicha, F. M.; Aref, N. S. Electro-chemical deposition of nano hydroxyapatite-zinc coating on titanium metal substrate. Int. J. Implant. Dent. 2017, 3, 39. DOI: 10.1186/s40729-017-0095-1.
  • Zeng, Y.; Pei, X.; Yang, S.; Qin, H.; Cai, H.; Shanshan, H.; Sui, L., Wan, Q.; Wang, J. Graphene Oxide/hydroxyapatite composite coatings fabricated by electrochemical deposition. Surf. Coat. Technol. 2015, 286, 72-79
  • Qiu, D.; Yang, L.; Yin, Y.; Wang, A. Preparation and characterization of hydroxyapatite/titania composite on NiTi alloy by electrochemical deposition. Surf. Coat. Technol. 2011, 205, 3280–3284. DOI: 10.1016/j.surfcoat.2010.11.049.
  • Du, H.; Yanli, A.; Zhang, X.; Wei, Y.; Hou, L.; Liu, B.; Liu, H.; Zhang, J.; Wang, N.; Umar, A., et al. Hydroxyapatite (HA) modified nanocoating enhancement on AZ31 Mg alloy by combined surface mechanical attrition treatment and electrochemical deposition. J. Nanosci. Nanotechnol. 2019, 19(2), 810–818.
  • Rath, P. C.; Besra, L.; Singh, B. P.; Bhattacharjee, S. Titania/hydroxyapatite Bi-layer coating on Ti metal by electrophoretic deposition: characterization and corrosion studies. Ceram. Int. 2012, 38, 3209–3216. DOI: 10.1016/j.ceramint.2011.12.026.
  • Dudek, K.; Goryezka, T. Electrophoretic deposition and characterization of thin hydroxyapatite coatings formed on the surface of NiTi shape memory alloy. Ceram. Int. 2016, 42(16), 19124–19132. DOI: 10.1016/j.ceramint.2016.09.074.
  • Robertson, S. F.; Bandyopadhyay, A.; Bose, S. Titania nanotube interface to increase adhesion strength of hydroxyapatite Sol-gel coating on Ti-6Al-4V for orthopedic application. Surf. Coat. Technol. 2019, 372, 140–147. DOI: 10.1016/j.surfcoat.2019.04.071.
  • Kaur, S.; Bala, N.; Kholsa, C. Characterization of hydroxyapatite coating on 316L stainless steel by sol–gel technique. Surf. Eng. Appl. Electrochem. 2019, 55, 357–366. DOI: 10.3103/S1068375519030104.
  • Sanjay Singh, R.; Manoj Kumar, K.; Kuntal, K., Pallavi, G.; Snehashish, D.; Jayganthan R.; Partha, R.; Debrupa, L. 2015, Sol-gel derived hydroxyapatite coating on Mg-3Zn alloy for orthopedic application. J. Miner. Metal. Mater. Soc. 67, 702-712.
  • Tang, H.; Han, Y.; Tao, W.; Tao, W.; Jian, X., Wu, Y.; Xu, F. Synthesis and properties of hydroxyapatite-containing coating on Az31 magnesium alloy by micro-arc oxidation. Appl. Surf. Sci. 2016, 400, 391-404,
  • Liu, S.; Baoe, L.; Liang, C.; Wang, H.; Qiao, Z. Formation mechanism and adhesive strength of a hydroxyapatite/TiO2 composite coating on a titanium surface prepared by micro-arc oxidation. Appl. Surf. Sci. 2016, 362, 109–114. DOI: 10.1016/j.apsusc.2015.11.086.
  • Rocha, R. C.; Galdino, A. G.; Silva, S. N. D.; Machado, M. L. P. Surface microstructural, and adhesion strength investigations of a bioactive hydroxyapatite/titanium oxide ceramic coating applied on Ti-6Al-4V alloys by plasma thermal spraying. Mater. Res. 2018, 21(4). DOI: 10.1590/1980-5373-mr-2017-1144.
  • Vikas Rattan, T. S.; Sidhu, M. Mittal. Study and characterization of mechanical and electrochemical corrosion properties of plasma sprayed hydroxyapatite coatings on AISI 304L stainless steel. J. Biomim. Biomater. Biomed. Eng. 2015, 35, 20–34.
  • Lima, R. S.; Khor, K. A.; Li, H.; Cheang, P.; Marple, B. R. HVOF spraying of nanostructured hydroxyapatite for biomedical applications. Mater. Sci. Eng. A. 2005, 396, 181–187. DOI: 10.1016/j.msea.2005.01.037.
  • Gardow, R.; Killinger, A.; Stiegler, N. Hydroxyapatite coating for biomedical applications deposited by different thermal spray techniques. Surf. Coat. Technol. 2010, 205, 1157–1164. DOI: 10.1016/j.surfcoat.2010.03.059.
  • Qudeiri, J. E. A.; Saleh, A.; Ziout, A.; Mourad, A.-H.; Abidi, M. H.; Elkaseer, A. Advanced electrical discharge machining of stainless steel: assessment of the state of the art, gap, and future prospect. Mater. 2019, 12, 907. DOI: 10.3390/ma12060907.
  • Batish, A.; Bhattacharya, A. Mechanism of material deposition from powder, electrode and dielectric for surface modification of H11 and H13 die steels in EDM process. Mater. Sci. Forum. 2012, 701, 61–75. DOI: 10.4028/www.scientific.net/MSF.701.61.
  • Bhattacharya, A.; Batish, A. Effect of process variables on microhardness, grain size and strain during machining of various die steels with powder-mixed electric-discharge machining using dummy treated experimental design. Proc IMechE, Part B: J. Eng. Manuf. 2012, 226, 1192–1204. DOI: 10.1177/0954405412442777.
  • Bhattacharya, A.; Batish, A.; Singh, G.; Singla, V. K. Optimal parameter settings for rough and finish machining of die steels in powder-mixed EDM. Int. J. Adv. Manuf. Technol. 2012, 61(5–8), 537–548.
  • Chander Prakash, H. K.; Kansal, B. S.; Pabla, S. P. Powder mixed electric discharge machining: an innovative surface modification technique to enhance fatigue performance and bioactivity of β-Ti implant for orthopedics application J. Comput. Inf. Sci. Eng. 2016, 164, 041006.
  • Prakash, C.; Kansal, H. K.; Pabla, B. S.; puri., S. Effect of surface nano-porosities fabricated by powder mixed electric discharge machining on bone-implant interface: an experimental and finite element study. Nanosci. Nanotechnol. Lett. 2016, 8, 815–826. DOI: 10.1166/nnl.2016.2255.
  • Chaudhury, P.; Samantaray, S.; Sabu, S. Optimization of process parameters of powder additive-mixed electrical discharge machining. Innov. Des. Devlop. Pract. Aeros. Autom. Eng. 2016, 415–425.
  • Mohal, S.; Kumar, H. Parametric optimization of multiwalled carbon nanotube-assisted electric discharge machining of Al-10%SiCp metal matrix composite by response surface methodology. Mater. Manuf. Process. 2017, 32, 263–273. DOI: 10.1080/10426914.2016.1140196.
  • Tripathy, S.; Tripathy, D. K. Multi-response optimization of machining process parameters for powder mixed electro-discharge machining of H-11 Die steel using grey relational analysis and topsis. Mach. Sci. Technol. 2017, 21, 362–384. DOI: 10.1080/10910344.2017.1283957.
  • Chander Prakash, H. K.; Kansal, B. S.; Pabla, S. Puri. experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium Alloy. Mater. Manuf. Process. 2017, 32, 274–285. DOI: 10.1080/10426914.2016.1198018.
  • Kumar, A.; Mandal, A.; Dixit, A. R.; Das, A. K. Performance evaluation of Al2O3 nano powder mixed dielectric for electric discharge machining of Inconel 825. Mater. Manuf. Process. 2018, 33, 986–995. DOI: 10.1080/10426914.2017.1376081.
  • Zain, Z. M.; Ndaliman, M. B.; Khan, A. A.; Ali, M. Y. Improving micro-hardness of stainless steel through powder-mixed electrical discharge machining. Proc IMechE, Part C: J. Mech. Eng. Sci. 2014, 228(18), 3374–3380.
  • Wang, H.; Zhao, F. L.; Wang, Y. G.; Lu, Z.-Z., et al. Study of Overcut in powder mixed EDM. Dalian Ligong Daxue Xuebao/J Dalian Univ. Technol. 2008, 48, 63–67.
  • Kalaman, S.; Yasar, H.; Ekmekci, N.; Opoz, T. T.; Ekmekci, B. Powder mixed electrical discharge machining and biocompatibility: a state of the art review. The 18th Int. Confer. Mach. Des. Prod., Eskisehir, Turkey; 2018.
  • Cyrill, J.; Asokan Paravasu, J.; Jerald, K. S.; Kanagaraj, G. Experimental investigation on performance of additive mixed dielectric during micro-electric discharge drilling on 316L stainless steel. Mater. Manuf. Process. 2017, 32, 638–644. DOI: 10.1080/10426914.2016.1221107.
  • Kuppan, P.; Rajadurai, A.; Narayanan, S. Influence of EDM Process parameters in deep hole drilling of Inconel 718. Int. J. Adv. Manuf. Technol. 2008, 38, 74–84. DOI: 10.1007/s00170-007-1084-y.
  • Zahiruddin, M. Z.; Rahim, E. A.; Hasan, S., Alvin, L. N. Effect of electrical parameters on the PMD-EDM performances of Titanium alloy. In: progress of machining technology— proceedings of the 8th int. conf. prog. Mach. Technol. (ICPMT2006), Mastue, Japan, Philadelphia, PA., 2006, pp.245–248.
  • Lajis, M. A.; Radzi, H.; Amin, A. The Implementation of Taguchi method on EDM process of Tungsten Carbide. Eur. J. Sci. Res. 2006, 26, 609–617.
  • Wang, J. L.; Yang, H.; Li, M. Study on discharge parameters of surface strengthening with powder mixed near dry EDM for H13 steel. Appl. Mech. Mater. 2014, 602(605), 757–760.
  • Kumar, A.; Maheshwari, S.; Sharma, C.; Beri, N. Analysis of machining characteristics in additive mixed electric discharge machining of nickel-based super alloy Inconel 718. Mater. Manuf. Process. 2011, 26(8), 1011–1018.
  • Sahu, D. R.; Mandal, A. Critical analysis of surface integrity parameters and dimensional accuracy in Powder-mixed EDM. Mater. Manuf. Process. 2020, 35(4), 430–441. DOI: 10.1080/10426914.2020.1718695.
  • Gangadharudu Talla, S. Gangopadhyay; C. K. Biswas. Influence of Graphite powder mixed EDM on the surface integrity characteristics of Inconel 625. Particul. Sci. Technol. 2017, 35, 219-226.
  • Kuriachen, B.; Mathew, J. Effect of powder mixed dielectric on material removal and surface modification in microelectric discharge machining of Ti-6Al-4V. Mater. Manuf. Process. 2016, 31, 439–446. DOI: 10.1080/10426914.2015.1004705.
  • Ahmad, S.; Lajis, M. A.; Haq, R. H. A.; Arifin, A. M. T.; Abdol Rahman, M. N.; Ho, F. H.; Abdullah, H.; Hassan, M. F. Surface roughness and surface topography of Inconel 718 in powder mixed dielectric electrical discharge machining (PMEDM). Int. J. Integ. Eng. 2018, 10(5). doi:10.30880/ijie.2018.10.05.027
  • Chakraborty, S.; Kar, S.; Dey, V.; Ghosh, S. K. The phenomenon of surface modification by electro-discharge coating process: a review. Surf. Rev. Lett. 2018, 25. DOI: 10.1142/S0218625X18300034.
  • Prakash, C.; Singh, S.; Singh, M.; Verma, K.; Chaudhary, B.; Singh, S. Multi-objective particle swarm optimization of EDM parameters to deposit HA-coating on biodegradable Mg-alloy. Vacuum. 2018, 158, 180–190. DOI: 10.1016/j.vacuum.2018.09.050.
  • Zain, Z. M.; Ndaliman, M. B.; Khan, A. A.; Ali, M. Y. Electro-discharge machining of SUS 304 stainless steel with TaC powder-mixed dielectric. Adv. Mater. Res. 2012, 576, 72–75.
  • Assarzadeh, S.; Ghoreishi, M. A dual response surface desirability approach to process modeling and optimization of Al2O3 powder-mixed electrical discharge machining (PMEDM) parameters. Int. J. Adv. Manuf. Technol. 2012, 64, 1459–1477.
  • Singh, A. K.; Kumar, S.; Singh, V. P. Optimization of parameters using conductive powder in dielectric for EDM of super Co 605 with multiple quality characteristics. Mater. Manuf. Process. 2014, 29, 267–273. DOI: 10.1080/10426914.2013.864397.
  • Tan, P. C.; Yeo, S. H. Investigation of recast layers generated by a powder-mixed dielectric micro electrical discharge machining process. Proc IMechE, Part B: J. Eng. Manuf. 2011, 225, 1051–1062. DOI: 10.1177/2041297510393645.
  • Sidhu, S. S.; Batish, A.; Kumar, S. Study of surface properties in particulate-reinforced Metal matrix composites (Mmcs) using powder-mixed electrical discharge machining (EDM). Mater. Manuf. Process. 2014, 29, 46–52. DOI: 10.1080/10426914.2013.852211.
  • Kolli, M.; Kumar, A. Experimental study of nonpolar surfactant mixed with dielectric fluid on Die-sinking EDM of Ti-6Al-4V alloy. J. Test. Eval. 2020, 48, 1155–1174. DOI: 10.1520/JTE20170660.
  • Bhaumik, M.; Maity, K. Effect of machining parameter on the surface roughness of AISI 304 in Silicon Carbide powder mixed EDM. Decis. Sci. Lett. 2017, 6, 261–268. DOI: 10.5267/j.dsl.2016.12.004.
  • Hameed, A. S.; Hamdoon, F. O.; Mohaned, S. Jafar. Influence of Powder Mixed EDM on the Surface Hardness of Die Steel. IOP conference: Mater. Sci. Eng., Baghdad, Iraq; 2019, 518.
  • Mahajan, A.; Sidhu, S. S. Enhancing biocompatibility of Co-Cr alloy implants via electrical discharge process. Mater. Technol. 2018, 33, 524–531. DOI: 10.1080/10667857.2018.1475144.
  • Rahang, M.; Patowari, P. K. Parametric optimization for selective surface modification in EDM using Taguchi analysis. Mater. Manuf. Process. 2016, 31, 422–431. DOI: 10.1080/10426914.2015.1037921.
  • Tiwary, A. P.; Pradhan, B. P.; Bhattacharyya, B. Influence of various metal powder mixed dielectric on micro-EDM characteristics of Ti-6Al-4V. Mater. Manuf. Process. 2019, 34, 1103–1119. DOI: 10.1080/10426914.2019.1628265.
  • Amorim, F. L.; Dalcin, V. A.; Soares, P.; Mendes, L. A. Surface modification of tool steel by electrical discharge machining with molybdenum powder mixed in dielectric fluid. Int. J. Adv. Manuf. Technol. 2017, 91, 341–350. DOI: 10.1007/s00170-016-9678-x.
  • Surekha, B.; Sree Lakshmi, T.; Jena, H.; Samal, P. Response surface modelling and application of fuzzy grey relational analysis to optimise the multi response characteristics of EN-19 machined using powder mixed EDM. Aus. J. Mech. Eng. 2019. DOI: 10.1080/14484846.2018.1564527.
  • Pecas, P.; Henriques, E. Effect of powder concentration and dielectric flow in the surface morphology in electric discharge machining with powder-mixed dielectric (PMD-EDM). J. Adv. Manuf. Technol. 2008, 37, 1120–1132. DOI: 10.1007/s00170-007-1061-5.
  • Kolli, M.; Kumar, A. Surfactant and Graphite powder assisted electrical discharge machining of titanium alloy. Proceedings of the Institution of Mech. Eng., Part B: J. Eng. Manuf., 2017, vol. 231, 641–657.
  • Banh, T.-L.; Nguyen, H.-P.; Ngo, C.; Nguyen, D.-T. Characteristics optimization of powder mixed electric discharge machining using titanium powder for die steel materials. J. Process Mech. Eng. 2017, 0(0), 1–18.
  • Zain, Z. M.; Ndaliman, M. B.; Khan, A. A.; Ali, M. Y. Electro-discharge machining of SUS 304 stainless steel with TaC powder-mixed dielectric. Adv. Mater. Res. 2012, 576, 72–75. DOI: 10.4028/www.scientific.net/AMR.576.72.
  • Khan, A. A.; Mohiuddin, A. K. M.; Faizi, M. H.; Norhamzan, N. H. Enhancement of machining performance during electrical discharge machining of stainless steel with carbon nanotube powder added dielectric fluid. Int. J. Appl. Eng. Res. 2018, 13, 7076–7080.
  • Li, Y. H.; Shang, X. Y. Recent progress in porous TiNb-based alloys for biomedical implant applications. Mater. Sci. Technol. 2020, 36, 385–392. DOI: 10.1080/02670836.2020.1724415.
  • Gabriel, S. B.;. Jessica Peixoto Da Silva Kassya, Caroline Miranda Jacinto, et. al. Development of Ti-12Mo-8Nb alloy for biomedical application. Mater. Sci. Forum. 2017, 899, 191-194.
  • Wang, Z. L.; Fang, Y.; Wu, P. N.; Zhao, W. S.; Cheng, K. surface modification process by electric discharge machining with a Ti powder green compact electrode. J. Mater. Process. Technol. 2002, 129, 139–142. DOI: 10.1016/S0924-0136(02)00597-6.
  • Kaneko, N.; Suzuki, Y.; Umeda, R.; Namiki, R.; Izawa, C.; Fukazawa, T. I.; Honda, M.; Takei, T.; Watanabe, T.; Aizawa, M., et al. Development of nitrogen-doped hydroxyapatite ceramics. J. Asian Ceram. Soc. 2020, 8(1), 130–137.
  • Mertens, A.; Reginster, S.; Contrepois, Q.; Dormal, T.; Lemaire, O.; Lecomte-Beckers, J. Microstructure and mechanical properties of stainless steel AISI 316L processed by selective laser melting. Mater. Sci. Forum. 2014, 783-786, 898–903. DOI: 10.4028/www.scientific.net/MSF.783-786.898.
  • Mertens, A.; Reginster, S.; Paydas, H.; Contrepois, Q.; Dormal, T.; Lemaire, O.; Lecomte-Beckers, J. Mechanical Properties of Alloy Ti–6Al–4V and of Stainless Steel 316L Processed by Selective Laser Melting: Influence of Out-of-equilibrium Microstructures. Powder Metal. 2014, 57(3), 184–189.
  • Ramalingam, V. V.; Ramasamy, P.; Kovukkal, M. D.; Govindaraju. Research and development in magnesium alloys for industrial and biomedical applications: a review. Metal. Mater. Int. 2019, 26, 409-430.
  • Qian, M.; Xu, W.; Brandt, M.; Tang, H. P. Additive manufacturing and postprocessing of Ti-6Al-4V for superior mechanical properties. Cambridge University Press. 2016, 41, 775–784.
  • Zhao, S.; Li, S. J.; Hou, W. T.; Hao, Y. L.; Yang, R.; Murr, L. E. Microstructure and mechanical properties of open cellular Ti–6Al–4V prototypes fabricated by electron beam melting for biomedical applications. Mater. Technol. 2016, 31, 98–107.
  • Brantley, W. A.; Herman, P. F. Cobalt-chromium and Nickel-chromium alloys for removal prosthodontics. part 1: mechanical properties. J. Prosthodont. 1993, 2, 144–150. DOI: 10.1111/j.1532-849X.1993.tb00398.x.
  • Munz, D.; Fett, T. Ceramics: mechanical properties, failure behavior, materials selection; Springer Sci. Bus. Media., 2013.
  • Dvorsky, D.; Kubasek, J.; Vojtech, D. AZ31 and WE43 alloys for biomedical applications. Solid State Phenom. 2017, 270, 205–211. DOI: 10.4028/www.scientific.net/SSP.270.205.
  • Zhang, C.; Lin, J.; Liu, H. Magnesium-based biodegradable materials for biomedical applications. Cambridge University Press. 2018, 3, 2359–2364.
  • Rzychon, T.; Kielbus, A. Microstructure of WE43 casting magnesium alloys. J. Achiev. Mater. Manuf. Eng. 2007, 21, 31–34.
  • Hermawan, H.; Dube, D.; Mantovani, D. Degradable metallic materials: design and development of Fe-Mn alloys for stents. J. Biomed. Mater. Res. 2010, 93, 1–11.
  • Eslami, H.; Tahrir, M. R.; Moztarzadeh, F.; Bader, R.; Taybei, L. Nanostructure hydroxyapatite for biomedical applications: from powder to bioceramics. J. Korean Ceram. Soc. 2018, 55, 597–607. DOI: 10.4191/kcers.2018.55.6.10.
  • Qin, J.; Yang, D.; Maher, S.; Lima-Marques, L.; Zhou, Y.; Chen, Y.; Atkins, G. J.; Losic, D. Micro- and nano-structured 3D printed titanium implants with hydroxyapatite coating for improved osseointegration. J. Mater. Chem. 2018, 6(19), 3136–3144.
  • Joshi, S. S.; Katakam, S.; Singh Arora, H.; Mukherjee, S.; Dahotre, N. B. Amorphous coatings and surfaces on structural materials. Crit. Rev. Solid State Mater. Sci. 2015, 41, 1-46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.