551
Views
8
CrossRef citations to date
0
Altmetric
Review

Experimental study on chip formation and surface quality in milling of TiB2/Al alloy composites

, ORCID Icon, ORCID Icon, , , , & show all
Pages 1671-1679 | Received 07 Mar 2020, Accepted 04 Jun 2020, Published online: 25 Jun 2020

References

  • Radhika, N.; Rajpurohit, P.; Diwakar, A. Synthesis of Al LM25/TiB2 In-situ Composites and Investigation of Its Adhesive Wear Behavior. Part. Sci. Technol. 2020, 38(2), 184–192. DOI: 10.1080/02726351.2018.1526833.
  • Liu, G.; Geng, J. W.; Li, Y. G.; Cai, L.; Chen, D.; Wang, M.; Ma, N.; Wang, H. Microstructures Evolution of Nano TiB2/7050Al Composite during Homogenization. Mater. Charact. 2020, 159, 110019. DOI: 10.1016/j.matchar.2019.110019.
  • Sun, H. H.; Chen, D.; Li, X. F.; Ma, N. H.; Wang, H. W. Electrochemical Corrosion Behavior of Al-Si Alloy Composites Reinforced with in Situ TiB2 Particulate. Mater. Corros. 2009, 60(6), 419–423. DOI:10.1002/maco.200805106.
  • Meti, V. K. V.; Shirur, S.; Nampoothiri, J.; Ravi, K. R.; Siddhalingeshwar, I. G. Synthesis, Characterization and Mechanical Properties of AA7075 Based MMCs Reinforced with TiB2 Particles Processed through Ultrasound Assisted In-Situ Casting Technique. Trans. Indian Inst. Met. 2018, 71(4), 841–848. DOI: 10.1007/s12666-017-1216-5.
  • Gao, Q.; Yang, B.; Mei, H.; Wu, H. C. Microstructure and Wear Resistance of Semisolid TiB2/7050 Composites Produced by Serpentine Tube Pouring Technique. Mater. Manuf. Process. 2016, 31(8), 1029–1036. DOI: 10.1080/10426914.2015.1037917.
  • Cheneke, S.; Karunakar, D. B. The Effect of Solution Treatment on Aging Behavior and Mechanical Properties of AA2024-TiB2 Composite Synthesized by Semi-solid Casting. SN Appl. Sci. 2019, 1(11), 1501. DOI:10.1007/s42452-019-1531-z.
  • Gobalakrishnan, B.; Lakshminarayanan, P. R.; Varahamoorthi, R. Effect of TiB2 Particle Addition on the Mechanical Properties of Al/TiB2 in Situ Formed Metal Matrix Composites. Mater. Test. 2018, 60(12), 1221–1224. DOI:10.3139/120.111273.
  • Zhao, B. W.; Yang, Q.; Wu, L.; Li, X. F.; Wang, M. L.; Wang, H. W. Effects of Nanosized Particles on Microstructure and Mechanical Properties of an Aged In-situ TiB2/Al-Cu-Li Composite. Mater. Sci. Eng. A 2019, 742, 573–583. Doi:10.1016/j.msea.2018.11.032.
  • Tjong, S. C.; Lau, K. C. Dry Sliding Wear of TiB2 Particle Reinforced Aluminium Alloy Composites. Mater. Sci. Technol. 2000, 16(1), 99–102. DOI: 10.1179/026708300773002717.
  • Kumar, S.; Sarma, V. S.; Murty, B. S. Influence of in Situ Formed TiB2 Particles on the Abrasive Wear Behaviour of Al-4Cu Alloy. Mater. Sci. Eng. A 2007, 465(1–2), 160–164. DOI:10.1016/j.msea.2007.02.117.
  • Ju, X. F.; Zhang, F. G.; Chen, Z.; Ji, G.; Wang, M.; Wu, Y.; Zhong, S.; Wang, H. Microstructure of Multi-Pass Friction-Stir-Processed Al-Zn-Mg-Cu Alloys Reinforced by Nano-Sized TiB2 Particles and the Effect of T6 Heat Treatment. Metals 2017, 7(12), 530.
  • Liu, G.; Geng, J. W.; Li, Y. G.; Cai, L.; Wang, M.; Chen, D.; Ma, N.; Wang, H. Effects of Pre-Strain on the Microstructural Evolution and Mechanical Strength of in Situ TiB2/7050 Al Composite. Adv. Eng. Mater. 2019, 21(7), 1900042.
  • Xiong, Y. F.; Wang, W. H.; Jiang, R. S.; Lin, K. Y.; Song, G. D. Tool Wear Mechanisms for Milling in Situ TiB2 Particle-reinforced Al Matrix Composites. Int. J. Adv. Manuf. Technol. 2016, 86(9–12), 3517–3526. DOI: 10.1007/s00170-016-8449-z.
  • Jiang, R. S.; Wang, W. H.; Song, G. D.; Wang, Z. Q. Experimental Investigation on Machinability of in Situ Formed TiB2 Particles Reinforced Al MMCs. J. Manuf. Process. 2016, 23, 249–257. DOI: 10.1016/j.jmapro.2016.05.004.
  • Xiong, Y. F.; Wang, W. H.; Jiang, R. S.; Lin, K. Y.; Song, G. D. Surface Integrity of Milling In-situ TiB2 Particle Reinforced Al Matrix Composites. Int. J. Refract. Met. Hard Mater. 2016, 54, 407–416. Doi:10.1016/j.ijrmhm.2015.09.007.
  • Wang, C. Y.; Xie, Y. X.; Zheng, L. J.; Qin, Z.; Tang, D. W.; Song, Y. X. Research on the Chip Formation Mechanism during the High-speed Milling of Hardened Steel. Int. J. Mach. Tools Manuf. 2014, 79, 31–48. DOI: 10.1016/j.ijmachtools.2014.01.002.
  • Ming, W. W.; Dang, J. Q.; an, Q. L.; Chen, M. Chip Formation and Hole Quality in Dry Drilling Additive Manufactured Ti6Al4V. Mater. Manuf. Process. 2020, 35(1), 43–51. DOI: 10.1080/10426914.2019.1692353.
  • Bejjani, R.; Balazinski, M.; Attia, H.; Plamondon, P.; L’Esperance, G. Chip Formation and Microstructure Evolution in the Adiabatic Shear Band When Machining Titanium Metal Matrix Composites. Int. J. Mach. Tools Manuf. 2016, 109, 137–146. DOI: 10.1016/j.ijmachtools.2016.08.001.
  • Huang, S. T.; Yu, X. L.; Wang, F. S.; Xu, L. F. A Study on Chip Shape and Chip-forming Mechanism in Grinding of High Volume Fraction SiC Particle Reinforced Al-matrix Composites. Int. J. Adv. Manuf. Technol. 2015, 80(9–12), 1927–1932. DOI: 10.1007/s00170-015-7138-7.
  • Chen, S.; Zou, P.; Wu, H.; Kang, D.; Wang, W. J. Mechanism of Chip Formation in Ultrasonic Vibration Drilling and Experimental Research. Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci. 2019, 233(15), 5214–5226. DOI:10.1177/0954406219848464.
  • Davis, B.; Dabrow, D.; Ju, L. C.; Li, A. H.; Xu, C. Y.; Huang, Y. Study of Chip Morphology and Chip Formation Mechanism during Machining of Magnesium-Based Metal Matrix Composites. J. Manuf. Sci. Eng. Trans. ASME 2017, 139(9), 091008. DOI: 10.1115/1.4037182.
  • Wang, B.; Liu, Z. Q. Serrated Chip Formation Mechanism Based on Mixed Mode of Ductile Fracture and Adiabatic Shear. Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 2014, 228(2), 181–190. DOI: 10.1177/0954405413497941.
  • Xiong, Y. F.; Wang, W. H.; Jiang, R. S.; Lin, K. Y.; Shao, M. W. Mechanisms and FEM Simulation of Chip Formation in Orthogonal Cutting In-Situ TiB2/7050Al MMC. Materials 2018, 11(4), 606.
  • Dabade, U. A.; Joshi, S. S. Analysis of Chip Formation Mechanism in Machining of Al/SiCp Metal Matrix Composites. J. Mater. Process. Technol. 2009, 209(10), 4704–4710. DOI: 10.1016/j.jmatprotec.2008.10.057.
  • Robinson, E. I.; Marzat, J.; Filtering, R. T. Uncertainty Propagation Methods for Model-Based Prognosis of Fatigue Crack Growth in Unidirectional Fiber-Reinforced Composites. ASCE-ASME J. Risk Uncertainity Eng. Syst. Part A. Civ. Eng. 2018, 4(4), 04018040. DOI:10.1061/AJRUA6.0000991.
  • Seo, B. H.; Kim, J. H.; Park, J. B.; Jung, G. D. Crack Propagation Characteristics of Particulate Reinforced Composites Using Digital Image Correlation. Materialwiss. Werkstofftech. 2015, 46(4–5), 387–393. DOI: 10.1002/mawe.201500413.
  • Ducobu, F.; Riviere-Lorphevre, E.; Filippi, E. Material Constitutive Model and Chip Separation Criterion Influence on the Modeling of Ti6Al4V Machining with Experimental Validation in Strictly Orthogonal Cutting Condition. Int. J. Mech. Sci. 2016, 107, 136–149. DOI: 10.1016/j.ijmecsci.2016.01.008.
  • Huang, S. T.; Guo, L.; He, H. H.; Yang, H. C.; Su, Y.; Xu, L. F. Experimental Study on SiCp/Al Composites with Different Volume Fractions in High-speed Milling with PCD Tools. Int. J. Adv. Manuf. Technol. 2018, 97(5–8), 2731–2739. DOI: 10.1007/s00170-018-2122-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.