330
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Screen-printing process of electromagnetic interference (EMI) shielding materials on mulberry paper

& ORCID Icon
Pages 1701-1706 | Received 04 Feb 2020, Accepted 12 Jun 2020, Published online: 30 Jun 2020

References

  • Kim, D. Y.; Steckl, A. J. Electrowetting on Paper for Electronic Paper Display. ACS Appl. Mater. Interfaces. 2010, 2(11), 3318–3323. DOI: 10.1021/am100757g.
  • Kim, J.; Seo, Y. B. Electro-Active Paper Actuators. Smart Mater. Struct. 2002, 11(3), 355–360. DOI: 10.1088/0964-1726/11/3/305.
  • Chen, A. S.; Zhu, H.; Li, Y.; Hu, L.; Bergbreiter, S. A Paper-Based Electrostatic Zipper Actuator for Printable Robots. In Proceedings - IEEE International Conference on Robotics and Automation, IEEE. 2014, 5038–5043. DOI: 10.1109/ICRA.2014.6907597.
  • Wang, Y. H.; Song, P.; Li, X.; Ru, C.; Ferrari, G.; Balasubramanian, P.; Amabili, M.; Sun, Y.; Liu, X. A Paper-Based Piezoelectric Accelerometer. Micromachines. 2018, 9(1), 1–12. DOI: 10.3390/mi9010019.
  • Anagnostou, D. E.; Gheethan, A. A.; Amert, A. K.; Whites, K. W. A Direct-Write Printed Antenna on Paper-Based Organic Substrate for Flexible Displays and WLAN Applications. IEEE/OSA J. Disp. Technol. 2010, 6(11), 558–564. DOI: 10.1109/JDT.2010.2045474.
  • Tehrani, P.; Hennerdal, L. O.; Dyer, A. L.; Reynolds, J. R.; Berggren, M. Improving the Contrast of All-Printed Electrochromic Polymer on Paper Displays. J. Mater. Chem. 2009, 19(13), 1799–1802. DOI: 10.1039/b820677e.
  • Wan, Y. J.; Zhu, P. L.; Yu, S. H.; Sun, R.; Wong, C. P.; Liao, W. H. Graphene Paper for Exceptional EMI Shielding Performance Using Large-Sized Graphene Oxide Sheets and Doping Strategy. Carbon N. Y. 2017, 122, 74–81. DOI: 10.1016/j.carbon.2017.06.042.
  • Fugetsu, B.; Sano, E.; Sunada, M.; Sambongi, Y.; Shibuya, T.; Wang, X.; Hiraki, T. Electrical Conductivity and Electromagnetic Interference Shielding Efficiency of Carbon Nanotube/Cellulose Composite Paper. Carbon N. Y. 2008, 46(9), 1256–1258. DOI: 10.1016/j.carbon.2008.04.024.
  • Tirkey, M. M.; Gupta, N. A Paper Based Perfect Electromagnetic Wave Absorber Using Conducting Grid Pattern. In 15th International Conference on Electromagnetic Interference and Compatibility, INCEMIC 2018; IEEE, 2018, 1–4. DOI: 10.1109/INCEMIC.2018.8704588.
  • Lang, A. W.; Österholm, A. M.; Reynolds, J. R. Paper-Based Electrochromic Devices Enabled by Nanocellulose-Coated Substrates. Adv. Funct. Mater. 2019, 29(39), 1903487. DOI: 10.1002/adfm.201903487.
  • Lee, T. W.; Lee, S. E.; Jeong, Y. G. Highly Effective Electromagnetic Interference Shielding Materials Based on Silver Nanowire/Cellulose Papers. ACS Appl. Mater. Interfaces. 2016, 8(20), 13123–13132. DOI: 10.1021/acsami.6b02218.
  • Gopakumar, D. A.; Pai, A. R.; Pottathara, Y. B.; Pasquini, D.; Carlos De Morais, L.; Luke, M.; Kalarikkal, N.; Grohens, Y.; Thomas, S. Cellulose Nanofiber-Based Polyaniline Flexible Papers as Sustainable Microwave Absorbers in the X-Band. ACS Appl. Mater. Interfaces. 2018, 10(23), 20032–20043. DOI: 10.1021/acsami.8b04549.
  • Jiang, D.; Murugadoss, V.; Wang, Y.; Lin, J.; Ding, T.; Wang, Z.; Shao, Q.; Wang, C.; Liu, H.; Lu, N.;; et al. Electromagnetic Interference Shielding Polymers and Nanocomposites – A Review. Polym. Rev. 2019, 59(2), 280–337. DOI: 10.1080/15583724.2018.1546737.
  • Joo, J.; Lee, C. Y. High Frequency Electromagnetic Interference Shielding Response of Mixtures and Multilayer Films Based on Conducting Polymers. J. Appl. Phys. 2000, 88(1), 513–518. DOI: 10.1063/1.373688.
  • Ponnamma, D.; Sadasivuni, K. K.; Strankowski, M.; Kasak, P.; Krupa, I.; AlMaadeed, M. A. A. Eco-Friendly Electromagnetic Interference Shielding Materials from Flexible Reduced Graphene Oxide Filled Polycaprolactone/Polyaniline Nanocomposites. Polym. - Plast. Technol. Eng. 2016, 55(9), 920–928. DOI: 10.1080/03602559.2015.1132435.
  • Li, -T.-T.; Chen, A.-P.; Hwang, P.-W.; Hsing, W.-H.; Lou, C.-W.; Chen, Y.-S.; Lin, J.-H. Synergistic Effects of Micro-/Nano-Fillers on Conductive and Electromagnetic Shielding Properties of Polypropylene Nanocomposites. Mater. Manuf. Process. 2017, 33, 149–155. DOI: 10.1080/10426914.2016.1269924.
  • Maejima, K.; Tomikawa, S.; Suzuki, K.; Citterio, D. Inkjet Printing: An Integrated and Green Chemical Approach to Microfluidic Paper-Based Analytical Devices. RSC Adv. 2013, 3(24), 9258–9263. DOI: 10.1039/c3ra40828k.
  • Tortorich, R. P.; Shamkhalichenar, H.; Choi, J. W. Inkjet-Printed and Paper-Based Electrochemical Sensors. Appl. Sci. 2018, 8(2), 1–16. DOI: 10.3390/app8020288.
  • Barras, R.; Cunha, I.; Gaspar, D.; Fortunato, E.; Martins, R.; Pereira, L. Printable Cellulose-Based Electroconductive Composites for Sensing Elements in Paper Electronics. Flex. Print. Electron. 2017, 2(1), 1–12. DOI: 10.1088/2058-8585/aa5ef9.
  • Shin, D. M.; Hong, S. W.; Hwang, Y. H. Recent Advances in Organic Piezoelectric Biomaterials for Energy and Biomedical Applications. Nanomaterials. 2020, 10(1), 1–15. DOI: 10.3390/nano10010123.
  • Pramanik, C.; Saha, H. Low Pressure Piezoresistive Sensors for Medical Electronics Applications. Mater. Manuf. Process. 2006, 21(3), 233–238. DOI: 10.1080/10426910500464446.
  • Vaseashta, A. Carbon Nanotubes Based Devices and Sensors. Mater. Manuf. Process. 2006, 21(7), 710–716. DOI: 10.1080/10426910600613595.
  • Zhong, T.; Jin, N.; Yuan, W.; Zhou, C.; Gu, W.; Cui, Z. Printable Stretchable Silver Ink and Application to Printed RFID Tags for Wearable Electronics. Materials (Basel). 2019, 12(18), 1–14. DOI: 10.3390/ma12183036.
  • Li, Y.; Samad, Y. A.; Taha, T.; Cai, G.; Fu, S.-Y.; Liao, K. Highly Flexible Strain Sensor from Tissue Paper for Wearable Electronics. ACS Sustain. Chem. Eng. 2016, 4(8), 4288–4295. DOI: 10.1021/acssuschemeng.6b00783.
  • Lee, H. M.; Choi, S. Y.; Jung, A.; Ko, S. H. Highly Conductive Aluminum Textile and Paper for Flexible and Wearable Electronics. Angew. Chem. Int. Ed. 2013, 52(30), 7718–7723. DOI: 10.1002/anie.201301941.
  • Liao, X.; Zhang, Z.; Liao, Q.; Liang, Q.; Ou, Y.; Xu, M.; Li, M.; Zhang, G.; Zhang, Y. Flexible and Printable Paper-Based Strain Sensors for Wearable and Large-Area Green Electronics. Nanoscale. 2016, 8(26), 13025–13032. DOI: 10.1039/c6nr02172g.
  • Yan, D. X.; Ren, P. G.; Pang, H.; Fu, Q.; Yang, M. B.; Li, Z. M. Efficient Electromagnetic Interference Shielding of Lightweight Graphene/Polystyrene Composite. J. Mater. Chem. 2012, 22(36), 18772–18774. DOI: 10.1039/c2jm32692b.
  • Lin, Y.; Su, K. T.; Chen, G. S.; Liu, J. S. Fabrication and Characterization of Microscale Sensors for Strain Measurement in Flexible Polymer Heart Valve Leaflet. Mater. Manuf. Process. 2010, 25(4), 243–245. DOI: 10.1080/10426910903426000.
  • Shen, S. C.; Pan, C. T.; Chang, S. J.; Lin, S. C. Wet Deposition Process for Thin-Film Transistors. Mater. Manuf. Process. 2014, 29(4), 498–503. DOI: 10.1080/10426914.2013.872254.
  • Yun, T. G.; Kim, D.; Kim, S. M.; Kim, I. D.; Hyun, S.; Han, S. M. Mulberry Paper-Based Supercapacitor Exhibiting High Mechanical and Chemical Toughness for Large-Scale Energy Storage Applications. Adv. Energy Mater. 2018, 8(21), 1800064. DOI: 10.1002/aenm.201800064.
  • Go, M.; Hwang, B.; Lim, S. Highly Reliable Mulberry Paper (Hanji)-based Electrode with Printed Silver Nanowire/Zinc Oxide Hybrid for Soft Electronics. Mater. Manuf. Process. 2019, 34(14), 1605–1611. DOI: 10.1080/10426914.2019.1594266.
  • Wang, L. B.; See, K. Y.; Zhang, J. W.; Salam, B.; Lu, A. C. W. Ultrathin and Flexible Screen-Printed Metasurfaces for EMI Shielding Applications. IEEE Trans. Electromagn. Compat. 2011, 53(3), 700–705. DOI: 10.1109/TEMC.2011.2159509.
  • Cheng, X.; Senior, D. E.; Kim, C.; Yoon, Y. K. A Compact Omnidirectional Self-Packaged Patch Antenna with Complementary Split-Ring Resonator Loading for Wireless Endoscope Applications. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1532–1535. DOI: 10.1109/LAWP.2011.2181315.
  • Shen, B.; Zhai, W.; Zheng, W. Ultrathin Flexible Graphene Film: An Excellent Thermal Conducting Material with Efficient EMI Shielding. Adv. Funct. Mater. 2014, 24(28), 4542–4548. DOI: 10.1002/adfm.201400079.
  • Lu, Y.; Jiang, S.; Huang, Y. Ultrasonic-Assisted Electroless Deposition of Ag on PET Fabric with Low Silver Content for EMI Shielding. Surf. Coatings Technol. 2010, 204(16–17), 2829–2833. DOI: 10.1016/j.surfcoat.2010.02.061.
  • Dijith, K. S.; Pillai, S.; Surendran, K. P. Screen Printed Silver Patterns on La0.5Sr0.5CoO3 − δ - Epoxy Composite as a Strategy for Many-Fold Increase in EMI Shielding. Surf. Coatings Technol. 2017, 330(September), 34–41. DOI: 10.1016/j.surfcoat.2017.09.063.
  • da Silva, B. S.; Campos, A. L. P. S.; Gomes Neto, A. Narrowband Shielding against Electromagnetic Interference in LTE 4G Systems Using Complementary Frequency Selective Surfaces. Microw. Opt. Technol. Lett. 2018, 60(9), 2293–2298. DOI: 10.1002/mop.31341.
  • Yang, X.; He, W.; Wang, S.; Zhou, G.; Tang, Y. Preparation of High-Performance Conductive Ink with Silver Nanoparticles and Nanoplates for Fabricating Conductive Films. Mater. Manuf. Process. 2012, 28(1), 1–4. DOI: 10.1080/10426914.2012.709344.
  • Abdollahifar, A.; Hashemi, S. A.; Mousavi, S. M.; Rahsepar, M. Electromagnetic Interference Shielding Effectiveness of Reinforced Composite with Graphene Oxide-Lead Oxide Hybrid Nanosheets. Radiat. Eff. Defects Solids. 2019, 174(9–10), 885–898. DOI: 10.1080/10420150.2019.1667358.
  • Al-Saleh, M. H.; Sundararaj, U. Electromagnetic Interference Shielding Mechanisms of CNT/Polymer Composites. Carbon. 2009, 47(7), 1738–1746. DOI: 10.1016/j.carbon.2009.02.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.