307
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Processing of copper by keyhole gas tungsten arc welding for uniformity of weld bead geometry

, , ORCID Icon, &
Pages 1707-1716 | Received 01 Mar 2020, Accepted 08 Jun 2020, Published online: 30 Jun 2020

References

  • Sun, Y. F.; Fuji, H. Investigation of the Welding Parameter Dependent Microstructure and Mechanical Properties of Friction Stir Welded Pure Copper. Mater. Sci. Eng. A. 2010, 527, 6879–6886. DOI: 10.1016/j.msea.2010.07.030.
  • Wang, L.; Li, X.; Gao, M.; Zeng, X. Stabilization Mechanism and Weld Morphological Features of Fiber Laser-arc Hybrid Welding of Pure Copper. J. Manuf. Process. 2017, 27, 207–213. DOI: 10.1016/j.jmapro.2017.05.009.
  • Butterworth, G. J.; Forty, C. B. A. A Survey of the Properties of Copper Alloys for Use as Fusion Reactor Materials. J. Nucl. Mater. 1992, 189, 237–276. DOI: 10.1016/0022-3115(92)90381-T.
  • Mehta, K. P.; Badheka, V. J. Influence of Tool Pin Design on Properties of Dissimilar Copper to Aluminum Friction Stir Welding. Trans. Nonferrous Met. Soc. China. 2017, 27, 36–54. DOI: 10.1016/S1003-6326(17)60005-0.
  • Mehta, K. P.; Badheka, V. J. A Review on Dissimilar Friction Stir Welding of Copper to Aluminum: Process, Properties, and Variants. Mater. Manuf. Process. 2016, 31, 37–41. DOI: 10.1080/10426914.2015.1025971.
  • Mehta, K. P.; Badheka, V. J. Effects of Tilt Angle on the Properties of Dissimilar Friction Stir Welding Copper to Aluminum. Mater. Manuf. Process. 2016, 31, 255–263. DOI: 10.1080/10426914.2014.994754.
  • Teng, Y. L.; Li, L.; Zhang, W.; Wang, N.; Feng, C. C.; Ren, J. H. Machining Characteristics of PCD by EDM with Cu-Ni Composite Electrode. Mater. Manuf. Process. 2020, 35, 442–448. DOI: 10.1080/10426914.2020.1718700.
  • Tang, D.; Li, J.; Wang, L.; Wang, Z.; Kong, C.; Yu, H. Fabrication of Gradient-structure CuNiBe Alloy Bars by Laser Remelting and Water-cooling. Mater. Manuf. Process. 2020, 35, 337–345. DOI: 10.1080/10426914.2020.1726948.
  • Guo, W.; Yi, Y.; Huang, S.; Mao, X.; Fang, J.; Tong, D.; Luan, Y. Manufacturing Large 2219 Al–Cu Alloy Rings by a Cold Rolling Process. Mater. Manuf. Process. 2020, 35, 291–302. DOI: 10.1080/10426914.2020.1718696.
  • Annuar, N. S. M.; Mahmoodian, R.; Shukor, M. H. A. Effect of Focused Ion Beam Process Parameter on Tin-Nickel-Copper Micropillars Microfabrication. Mater. Manuf. Process. 2020, 35, 163–171. DOI: 10.1080/10426914.2020.1711923.
  • Aghbolagh, V. M.; Alimirzaloo, V.; Khamedi, R. Constrained Groove Pressing Process of Al/Cu Bimetal Sheet. Mater. Manuf. Process. 2020, 35, 130–141. DOI: 10.1080/10426914.2019.1692351.
  • Gao, P.; Zhang, Y.; Mehta, K. P. Metallurgical and Mechanical Properties of Al–Cu Joint by Friction Stir Spot Welding and Modified Friction Stir Clinching. Met. Mater. Int. 2020. DOI: 10.1007/s12540-020-00759-w.
  • Carvalho, G. H. S. F. L.; Galvão, I.; Mendes, R.; Leal, R. M.; Loureiro, A. Friction Stir Welding and Explosive Welding of Aluminum/copper: Process Analysis. Mater. Manuf. Process. 2019, 34, 1243–1250. DOI: 10.1080/10426914.2019.1644452.
  • Jiang, W.; Guan, F.; Li, G.; Jiang, H.; Zhu, J.; Fan, Z. Processing of Al/Cu Bimetal via a Novel Compound Casting Method. Mater. Manuf. Process. 2019, 34, 1016–1025. DOI: 10.1080/10426914.2019.1615084.
  • Joshi, G. R.; Badheka, V. J. Processing of Bimetallic Steel-copper Joint by Laser Beam Welding. Mater. Manuf. Process. 2019, 34(11), 1232–1242. DOI: 10.1080/10426914.2019.1628262.
  • Shahid, M. B.; Han, S. C.; Jun, T. S.; Park, D. S. Effect of Process Parameters on the Joint Strength in Ultrasonic Welding of Cu and Ni Foils. Mater. Manuf. Process. 2019, 34, 1217–1224. DOI: 10.1080/10426914.2019.1643474.
  • Zhang, L. J.; Ning, J.; Zhang, X. J.; Zhang, G. F.; Zhang, J. X. Single Pass Hybrid laser-MIG Welding of 4-mm Thick Copper without Preheating. Mater. Des. 2015, 74, 1–18. DOI: 10.1016/j.matdes.2015.02.027.
  • Auwal, S. T.; Ramesh, S.; Yusof, F.; Manladan, S. M. A Review on Laser Beam Welding of Copper Alloys. Int. J. Adv. Manuf. Technol. 2018, 96, 475–490. DOI: 10.1007/s00170-017-1566-5.
  • Mehta, K. P.; Badheka, V. J. Hybrid Approaches of Assisted Heating and Cooling for Friction Stir Welding of Copper to Aluminum Joints. J. Mater. Process. Technol. 2017, 239, 336–345. DOI: 10.1016/j.jmatprotec.2016.08.037.
  • Mehta, K.; Gupta, K. Advanced Joining and Welding Techniques: An Overview. Adv. Manuf. Technol. Mater. Form. Machi. Trib. 2017, 101–136. DOI: 10.1007/978-3-319-56099-1.
  • Reisgen, U.; Olschok, S.; Jakobs, S.; Turner, C. Sound Welding of Copper: Laser Beam Welding in Vacuum. Phys. Procedia. 2016, 83, 447–454. DOI: 10.1016/j.phpro.2016.08.046.
  • Yinan, L.; Shanbin, Z.; Zilong, P.; Feng, G. A Study on the Mechanism of Crystal Cracking in GTA Welding of Copper Plates. Mater. Manuf. Process. 2016, 31, 2143–2151. DOI: 10.1080/10426914.2015.1103861.
  • Nakata, K.;. Friction Stir Welding of Copper Alloys. Weld. Int. 2005, 19, 929–933. DOI: 10.1533/wint.2005.3519.
  • Fan, W.; Ao, S.; Huang, Y.; Liu, W.; Li, Y.; Feng, Y. Water Cooling Keyhole Gas Tungsten Arc Welding of HSLA Steel. Int. J. Adv. Manuf. Technol. 2017, 92, 2207–2216. DOI: 10.1007/s00170-017-0234-0.
  • Fei, Z.; Pan, Z.; Cuiuri, D.; Li, H.; Gazder, A. A. A Combination of Keyhole GTAW with A Trapezoidal Interlayer: A New Insight into Armour Steel Welding. Materials (Basel). 2019, 12, 1–18. DOI: 10.3390/ma12213571.
  • Liu, S.; Liu, Z. M.; Zhao, X. C.; Fan, X. G. Influence of Cusp Magnetic Field Configuration on K-TIG Welding Arc Penetration Behavior. J. Manuf. Process. 2020, 53, 229–237. DOI: 10.1016/j.jmapro.2020.02.027.
  • Aval, H. J.; Farzadi, A.; Serajzadeh, S. Theoretical and Experimental Study of Microstructures and Weld Pool Geometry during GTAW of 304 Stainless Steel. Int. J. Adv. Manuf. Technol. 2009, 42, 1043–1051. DOI: 10.1007/s00170-008-1663-6.
  • Sharma, P.; Dwivedi, D. K. Comparative Study of Activated flux-GTAW and multipass-GTAW Dissimilar P92 steel-304H ASS Joints. Mater. Manuf. Process. 2019, 34, 1–10. DOI: 10.1080/10426914.2019.1605175.
  • The Welding Institute. TWI Limited. https://www.twi-global.com/technicalknowledge/faqs/faq-what-is-the-difference-between-heat-input-and-arc-energy (accessed May 11, 2020).
  • Miyagi, M.; Zhang, X. Investigation of Laser Welding Phenomena of Pure Copper by X-ray Observation System. J. Laser Appl. 2015, 27, 042005. DOI: 10.2351/1.4927609.
  • Lei, Y. C.; Yu, W. X.; Li, C. H.; Cheng, X. N. Simulation on Temperature Field of TIG Welding of Copper without Preheating. Trans. Nonferrous Met. Soc. China. 2006, 16, 838–842. DOI: 10.1016/S1003-6326(06)60336-1.
  • Lin, J. W.; Chang, H. C.; Wu, M. H. Comparison of Mechanical Properties of Pure Copper Welded Using Friction Stir Welding and Tungsten Inert Gas Welding. J. Manuf. Process. 2014, 16, 296–304. DOI: 10.1016/j.jmapro.2013.09.006.
  • Davis, J. R. Copper and Copper Alloys, ASM Speciality Handbook, 2001; pp 32–33. ASM International: Materials Park, OH.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.