629
Views
12
CrossRef citations to date
0
Altmetric
Research Article

A new sintering method for fabrication of open-cell metal foam parts

, &
Pages 1717-1726 | Received 19 Mar 2020, Accepted 16 Jun 2020, Published online: 13 Jul 2020

References

  • Boomsma, K.; Poulikakos, D.; Zwick, F. Metal Foams as Compact High Performance Heat Exchangers. Mech. Mater. 2003, 35(12), 1161–1176. DOI: 10.1016/j.mechmat.2003.02.001.
  • Lu, T. J.; Hess, A.; Ashby, M. F. Sound Absorption in Metallic Foams. J. Appl. Phys. 1999, 85(11), 7528–7539. DOI: 10.1063/1.370550.
  • Hur, B. Y.; Park, B. K.; Ha, D.-I.; Um, Y. S. Sound Absorption Properties of Fiber and Porous Materials. Mater. Sci. Forum. 2005, pp 2687–2690.
  • Liu, P.; Qing, H.; Hou, H. Primary Investigation on Sound Absorption Performance of Highly Porous Titanium Foams. Mater. Des. 2015, 85, 275–281. DOI: 10.1016/j.matdes.2015.06.118.
  • Haibin, L.; Xiaohong, Z. Sound Absorption Properties and Applications of Metal Foam [J]. Electr. Power Sci. Eng.. 2009, 10, 40–42.
  • Banhart, J. Manufacture, Characterisation and Application of Cellular Metals and Metal Foams. Prog. Mater. Sci. 2001, 46(6), 559–632. DOI: 10.1016/S0079-6425(00)00002-5.
  • Zhao, B.; Gain, A. K.; Ding, W.; Zhang, L.; Li, X.; Fu, Y. A Review on Metallic Porous Materials: Pore Formation, Mechanical Properties, and Their Applications. Int. J. Adv. Manuf. Technol. 2018, 95(58), 2641–2659. DOI: 10.1007/s00170-017-1415-6.
  • Hangai, Y.; Morita, T.; Utsunomiya, T. Fabrication of Al Foam with Harmonic Structure by Cu Addition Using Sintering and Dissolution Process. Mater. Lett. 2018, 230, 120–122. DOI: 10.1016/j.matlet.2018.07.093.
  • Breneman, R. C.; Bullied, S. J.; Blondin, J. F.; Noraas, R. B. Variable Diameter Investment Casting Mold for Casting of Reticulated Metal Foams. US Patent 9; 2018. 884,363
  • Ma, Y.; Bao, C.; Chen, J.; Song, S.; Han, L. Study on Microstructures and Mechanical Properties of Foam Titanium Carbide Ceramics Fabricated by Reaction Sintering Process. J. Mater. Eng. Perform. 2018, 27(7), 3315–3322. DOI: 10.1007/s11665-018-3404-9.
  • Sharma, V.; Zivic, F.; Grujovic, N.; Babcsan, N.; Babcsan, J. Numerical Modeling and Experimental Behavior of Closed-Cell Aluminum Foam Fabricated by the Gas Blowing Method under Compressive Loading. Materials. 2019, 12(10), 1582. DOI: 10.3390/ma12101582.
  • Harun, W.; Kamariah, M.; Muhamad, N.; Ghani, S.; Ahmad, F.; Mohamed, Z. A Review of Powder Additive Manufacturing Processes for Metallic Biomaterials. Powder Technol. 2018, 327, 128–151. DOI: 10.1016/j.powtec.2017.12.058.
  • Wang, Q. Z.; Cui, C. X.; Liu, S. J.; Zhao, L. C. Open-celled Porous Cu Prepared by Replication of NaCl Space-holders. Mater. Sci. Eng. A. 2010, 527(45), 1275–1278. DOI: 10.1016/j.msea.2009.10.062.
  • Hangai, Y.; Zushida, K.; Fujii, H.; Ueji, R.; Kuwazuru, O.; Yoshikawa, N. Friction Powder Compaction Process for Fabricating Open-celled Cu Foam by Sintering-dissolution Process Route Using NaCl Space Holder. Mater. Sci. Eng. A. 2013, 585, 468–474. DOI: 10.1016/j.msea.2013.08.004.
  • Hangai, Y.; Morita, T.; Koyama, S.; Kuwazuru, O.; Yoshikawa, N. Functionally Graded Aluminum Foam Fabricated by Friction Powder Sintering Process with Traversing Tool. J. Mater. Eng. Perform. 2016, 25(9), 3691–3696. DOI: 10.1007/s11665-016-2218-x.
  • Hangai, Y.; Utsunomiya, T.; Hasegawa, M. Effect of Tool Rotating Rate on Foaming Properties of Porous Aluminum Fabricated by Using Friction Stir Processing. Journal of Materials Processing Technology. 2010, 210(2), 288–292. DOI: 10.1016/j.jmatprotec.2009.09.012.
  • Anglani, A.; Pacella, M. Logistic Regression and Response Surface Design for Statistical Modeling of Investment Casting Process in Metal Foam Production. Procedia CIRP. 2018, 67, 504–509. DOI: 10.1016/j.procir.2017.12.252.
  • Ghali, S.; Eissa, M. Influence of Different Parameters on Compression Strength of Foam Steel Produced by Slip Reaction Foam Sintering. Ironmaking Steelmaking 2018, 45(1), 90–97. DOI: 10.1080/03019233.2016.1242929.
  • Peng, Q.; Yang, B.; Friedrich, B. Porous Titanium Parts Fabricated by Sintering of TiH2and Ti Powder Mixtures. J. Mater. Eng. Perform. 2018, 27(1), 228–242. DOI: 10.1007/s11665-017-3099-3.
  • Amirjan, M.; Bozorg, M. Properties and Corrosion Behavior of Al Based Nanocomposite Foams Produced by the Sintering-dissolution Process. Int. J. Miner. Metall. Mater. 2018, 25(1), 94–101. DOI: 10.1007/s12613-018-1551-5.
  • Sarajan, Z.; Sedigh, M. Influences of Titanium Hydride (Tih2) Content and Holding Temperature in Foamed Pure Aluminum. Mater. Manuf. Processes. 2009, 24(5), 590–593. DOI: 10.1080/10426910902748016.
  • Zhao, Y.; Fung, T.; Zhang, L.; Zhang, F. Lost Carbonate Sintering Process for Manufacturing Metal Foams. Scr. Mater. 2005, 52, 295–298. DOI: 10.1016/j.scriptamat.2004.10.012.
  • Guo, C. Q.; Sun, Y. D.; Zhou, Y.; Xie, B.; Wang, T. Y.; Zuo, X. Q. Fabrication, Structure and Property of Copper Foam. Mater. Sci. Forum. 2018, 933, pp 41–48. Doi:10.4028/www.scientific.net/MSF.933.41.
  • Papantoniou, I. G.; Markopoulos, A. P.; Pantelis, D. I.; Manolakos, D. E. Application of Aluminium Flakes in Fabrication of Open-Cell Aluminium Foams by Space Holder Method. Materials. 2018, 11(8), 1420. DOI: 10.3390/ma11081420.
  • Wang, Q.; Liu, W.; Lu, D.; Cui, C. Open-celled Porous Cu Prepared by Replication of a New Space-holder. Mater. Lett. 2015, 142, 52–55. DOI: 10.1016/j.matlet.2014.11.152.
  • Kalantari, S. M.; Arabi, H.; Mirdamadi, S.; Mirsalehi, S. A. Biocompatibility and Compressive Properties of Ti-6Al-4V Scaffolds Having Mg Element. J. Mech. Behav. Biomed. Mater. 2015, 48, 183–191. DOI: 10.1016/j.jmbbm.2015.04.015.
  • Esen, Z.; Bor, S. Characterization of Ti-6Al-4V Alloy Foams Synthesized by Space Holder Technique. Mater. Sci. Eng. A. 2011, 528, 3200–3209. DOI: 10.1016/j.msea.2011.01.008.
  • Aşk, E. E.; Bor, Ş. Fatigue Behavior of Ti–6Al–4V Foams Processed by Magnesium Space Holder Technique. Mater. Sci. Eng. A. 2015, 621, 157–165. DOI: 10.1016/j.msea.2014.10.068.
  • Zhao, Y. Y.; Sun, D. X. Novel Sintering-dissolution Process for Manufacturing Al Foams. Scr. Mater. 2001, 44, 105–110. DOI: 10.1016/S1359-6462(00)00548-0.
  • Yang, Y. J.; Han, F. S. Damping Behaviours of Open Cell Pure Al Foams Fabricated by Sintering and Dissolution Process. Powder Metall. 2007, 50, 239–242. DOI: 10.1179/174329007X177994.
  • Hakamada, M.; Yamada, Y.; Nomura, T.; Chen, Y.; Kusuda, H.; Mabuchi, M. Fabrication of Porous Aluminum by Spacer Method Consisting of Spark Plasma Sintering and Sodium Chloride Dissolution. Mater. Trans. 2005, 46, 2624–2628. DOI: 10.2320/matertrans.46.2624.
  • Sun, D.; Zhao, Y. Static and Dynamic Energy Absorption of Al Foams Produced by the Sintering and Dissolution Process. Metallurgical and Materials Transactions B. 2003, 34(1), 69–74. DOI: 10.1007/s11663-003-0056-3.
  • Wen, C. E.; Mabuchi, M.; Yamada, Y.; Shimojima, K.; Chino, Y.; Hosokawa, H.; Asahina, T. Processing of Fine-grained Aluminum Foam by Spark Plasma Sintering. J. Mater. Sci. Lett. 2003, 22(20), 1407–1409. DOI: 10.1023/A:1025751128104.
  • Bansiddhi, A.; Dunand, D. C. Shape-memory NiTi Foams Produced by Replication of NaCl Space-holders. Acta Biomater. 1996–2007, 2008(4). DOI: 10.1016/j.actbio.2008.06.005.
  • Bhattarai, S. R.; Khalil, K. A. R.; Dewidar, M.; Pyoung, H. H.; Ho, K. Y.; Kim, H. Y. Novel Production method and in-Vitro cell compatibility of porous Ti‐6Al‐4V alloy disk for hard tissue engineering. Journal of Biomedical Materials Research - Part A. 2008, 86(2),289–299. DOI: 10.1002/jbm.a.31490.
  • Hangai, Y.; Zushida, K.; Kuwazuru, O.; Yoshikawa, N. Large-scale Aluminum Foam Plate Fabricated by Enhanced Friction Powder Compaction Process Based on Sintering and Dissolution Process. Journal of Materials Processing Technology. 1721–1727, 2014(214). DOI: 10.1016/j.jmatprotec.2014.03.021.
  • Sharma, V.; Racherla, V.; Pal, S. Friction Sintering of Brass Powder. Adv. Mater. Process. Technol. 2019, 5(1), 95–103. DOI: 10.1080/2374068X.2018.1524257.
  • Sharma, V.; Racherla, V.; Pal, S. Synthesis of Open-cell Copper Foam Using Friction Sintering. Int. J. Adv. Manuf. Technol. 2019, 103(58), 3163–3174. DOI: 10.1007/s00170-019-03562-z.
  • Standard, I. ISO 13314 Mechanical Testing of Metals, Ductility Testing, Compression Test for Porous and Cellular Metals. Ref. Number ISO 2011, 13314, 1–7.
  • Bart-Smith, H.; Bastawros, A.-F.; Mumm, D. R.; Evans, A. G.; Sypeck, D. J.; Wadley, H. N. G. Compressive Deformation and Yielding Mechanisms in Cellular Al Alloys Determined Using X-ray Tomography and Surface Strain Mapping. MRS Proceedings 1998, 521, 71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.