349
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Parameters effect on electrical conductivity of copper fabricated by rapid manufacturing

ORCID Icon, , &
Pages 1769-1780 | Received 08 May 2020, Accepted 12 Jun 2020, Published online: 30 Jun 2020

References

  • Bourell, D. L. D.; Beaman, J. J.; Leu, M. C.; Rosen, D. W. A brief history of additive manufacturing and the 2009 roadmap for additive manufacturing: looking back and looking ahead. US – TURKEY Work. Rapid Technol. 2009 (2), 5–11. DOI: 10.1089/3dp.2013.0002.
  • Huang, S.; Ye, C.; Zhao, H.; Fan, Z. Parameters optimization of binder jetting process using modified silicate as a binder. Mater. Manuf. Process. 2020, 35(2), 214–220. DOI: 10.1080/10426914.2019.1675890.
  • Jeong, W.; Kwon, Y.; Kim, D. Three-dimensional printing of tungsten structures by directed energy deposition. Mater. Manuf. Process. 2019, 34(9), 986–992. DOI: 10.1080/10426914.2019.1594253.
  • Senthilkumaran, K.; Pandey, P. M.; Rao, P. V. M. New model for shrinkage compensation in selective laser sintering. Virtual Phys. Prototyp. 2009, 4(2), 49–62. DOI: 10.1080/17452750802393659.
  • Pogson, S. R.; Fox, P.; Sutcliffe, C. J.; O’Neill, W. The production of copper parts using DMLR. Rapid Prototyp. J. 2003, 9(5), 334–343. DOI: 10.1108/13552540310502239.
  • Lodes, M. A.; Guschlbauer, R.; Körner, C. Process development for the manufacturing of 99.94% pure copper via selective electron beam melting. Mater. Lett. 2015, 143, 298–301. DOI: 10.1016/j.matlet.2014.12.105.
  • Ramirez, D. A.; Murr, L. E.; Martinez, E.; Hernandez, D. H.; Martinez, J. L.; MacHado, B. I.; Medina, F.; Frigola, P.; Wicker, R. B. Novel precipitate-microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting. Acta Mater. 2011, 59(10), 4088–4099. DOI: 10.1016/j.actamat.2011.03.033.
  • Bai, Y.; Williams, C. B. An exploration of binder jetting of copper. Rapid Prototyp. J. 2015, 21(2), 177–185. DOI: 10.1108/RPJ-12-2014-0180.
  • Bai, Y.; Williams, C. B. Binder jetting additive manufacturing with a particle-free metal ink as a binder precursor. Mater. Des. 2018, 147(2017), 146–156. DOI: 10.1016/j.matdes.2018.03.027.
  • Meeder, M. P.; Modeling the thermal and electrical properties of different density sintered binder jetted copper for verification and revision of the Wiedemann-Franz law, 2016.
  • Bai, Y.; Wagner, G.; Williams, C. B. Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals. J. Manuf. Sci. Eng. 2017, 139(8), 1–6. DOI: 10.1115/1.4036640.
  • Yegyan Kumar, A.; Bai, Y.; Eklund, A.; Williams, C. B. The effects of hot isostatic pressing on parts fabricated by binder jetting additive manufacturing. Addit. Manuf. 2018, 24(August), 115–124. DOI: 10.1016/j.addma.2018.09.021.
  • Ren, L.; Zhou, X.; Song, Z.; Zhao, C.; Liu, Q.; Xue, J.; Li, X. Process parameter optimization of extrusion-based 3D metal printing utilizing PW-LDPE-SA binder system. Materials (Basel). 2017, 10(3). DOI: 10.3390/ma10030305.
  • Yan, X.; Wang, C.; Xiong, W.; Hou, T.; Hao, L.; Tang, D. Thermal debinding mass transfer mechanism and dynamics of copper green parts fabricated by an innovative 3D printing method. RSC Adv. 2018, 8(19), 10355–10360. DOI: 10.1039/c7ra13149f.
  • Haashir, A.; Debnath, T.; Patowari, P. K. A comparative assessment of micro drilling in boron carbide using ultrasonic machining. Mater. Manuf. Process. 2020, 35(1), 86–94. DOI: 10.1080/10426914.2019.1697447.
  • Rubino, F.; Parmar, H.; Esperto, V.; Carlone, P. Ultrasonic welding of magnesium alloys: a review. Mater. Manuf. Process. 2020, 1–18. DOI: 10.1080/10426914.2020.1758330.
  • Abedini, R.; Abdullah, A.; Alizadeh, Y. Ultrasonic hot powder compaction of Ti-6Al-4V. Ultrason. Sonochem. 2017, 37, 640–647. DOI: 10.1016/j.ultsonch.2017.02.012.
  • Chachin, V. N.; Sedyako, G. K. Effects of ultrasonic vibrations on the sintering of metal-powder materials. Sov. Powder Metall. Met. Ceram. 1968, 7(9), 693–694. DOI: 10.1007/BF00773733.
  • Wei, R.; Lv, X.; Yang, M.; Xu, J. Effect of ultrasonic vibration treatment on solid-state reactions between Fe2O3 and CaO. Ultrason. Sonochem. 2017, 38, 281–288. DOI: 10.1016/j.ultsonch.2017.03.023.
  • Singh, G.; Pandey, P. M. Ultrasonic assisted pressureless sintering for rapid manufacturing of complex copper components. Mater. Lett. 2019, 236, 276–280. DOI: 10.1016/j.matlet.2018.10.123.
  • Singh, G.; Pandey, P. M. Neck growth kinetics during ultrasonic-assisted sintering of copper powder. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 1–11. DOI: 10.1177/0954406220904108.
  • Li, Y.; Jing, H.; Han, Y.; Xu, L.; Lu, G. Microstructure and joint properties of nano-silver paste by ultrasonic-assisted pressureless sintering. J. Electron. Mater. 2016, 45(6), 3003–3012. DOI: 10.1007/s11664-016-4394-8.
  • Mei, D.; Wang, H.; Yao, Z.; Li, Y. Ultrasonic-assisted hot pressing of Bi 2 Te 3-based thermoelectric materials. Mater. Sci. Semicond. Process. 2018, 87(June), 126–133. DOI: 10.1016/j.mssp.2018.07.019.
  • Tsujino, J.; Ueoka, T.; Suzuki, H.; Shinuchi, S.; Hashimoto, K. Ultrasonic vibration press of metal and ceramics powder using complex vibration and vaccum condition. IEEE Ultrason. Symp. 1991, 973–978.
  • Zhao, H. Y.; Liu, J. H.; Li, Z. L.; Zhao, Y. X.; Niu, H. W.; Song, X. G.; Dong, H. J. Non-interfacial growth of Cu3Sn in Cu/Sn/Cu joints during ultrasonic-assisted transient liquid phase soldering process. Mater. Lett. 2017, 186, 283–288. DOI: 10.1016/j.matlet.2016.10.017.
  • Pan, H.; Huang, J.; Ji, H.; Li, M. Enhancing the solid/liquid interfacial metallurgical reaction of Sn + Cu composite solder by ultrasonic-assisted chip attachment. J. Alloys Compd. 2019, 784, 603–610. DOI: 10.1016/j.jallcom.2019.01.090.
  • Singh, G.; Pandey, P. M. Rapid manufacturing of copper-graphene composites using a novel rapid tooling technique. Rapid Prototyp. J. 2020, DOI: 10.1108/RPJ-10-2019-0258.
  • Singh, G.; Pandey, P. M. Rapid manufacturing of copper components using 3D printing and ultrasonic assisted pressureless sintering: experimental investigations and process optimization. J. Manuf. Process. 2019, 43, 253–269. DOI: 10.1016/j.jmapro.2019.05.010.
  • Singh, G.; Pandey, P. M. Design and Analysis of Long-Stepped Horn for Ultrasonic Assisted Sintering. In 21st International Conference on Advances in Materials and Processing Technology (AMPT); Dublin, Ireland, 2018.
  • Singh, G.; Pandey, P. M. Topological ordered copper graphene composite foam: fabrication and compression properties study. Mater. Lett. 2019, 257, 1–5. DOI: 10.1016/j.matlet.2019.126712.
  • Sahu, A. K.; Jha, S. Microchannel fabrication and metallurgical characterization on titanium by nanosecond fiber laser micromilling. Mater. Manuf. Process. 2020, 35(3), 279–290. DOI: 10.1080/10426914.2020.1718702.
  • Singh, G.; Pandey, P. M. Experimental investigations into mechanical and thermal properties of rapid manufactured copper parts. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234(1), 82–95. DOI: 10.1177/0954406219875483.
  • Ayyappadas, C.; Muthuchamy, A.; Raja Annamalai, A.; Agrawal, D. K. An investigation on the effect of sintering mode on various properties of copper-graphene metal matrix composite. Adv. Powder Technol. 2017, 28(7), 1760–1768. DOI: 10.1016/j.apt.2017.04.013.
  • Sharma, V.; Pandey, P. M. Optimization of machining and vibration parameters for residual stresses minimization in ultrasonic assisted turning of 4340 hardened steel. Ultrasonics. 2016, 70, 172–182. DOI: 10.1016/j.ultras.2016.05.001.
  • Wang, F.; Nie, N.; He, H.; Tang, Z.; Chen, Z.; Zhu, W. Ultrasonic-assisted sintering of silver nanoparticles for flexible electronics. J. Phys. Chem. C. 2017, 121(51), 28515–28519. DOI: 10.1021/acs.jpcc.7b09581.
  • German, R.;. Sintering: From Empirical Observations to Scientific Principles. 2014. DOI: 10.1016/C2012-0-00717-X.
  • Alexander, B. H.; Balluffi, R. W. The mechanism of sintering of copper. Acta. Metall. 1957, 5(11), 666–677. DOI: 10.1016/0001-6160(57)90113-X.
  • Suk-Joong, L. K.;. Sintering Densification, Grain Growth, and Microstructure. Elsevier Butterworth-Heinemann Linacre House 2005, No. ISBN 978-0-7506-6385-4., 9–18. DOI:10.1016/B978-075066385-4/50009-1.
  • Lasgesecker, B.;. Effects of ultrasound on deformation characteristics of metals. IEEE transactions on sonics and ultrasonics. 1966, vol. 13, no 1, p. 1–8.
  • Singh, D.; Pandey, P. M.; Kalyanasundaram, D. Optimization of pressure-less microwave sintering of Ti6Al4V by response surface methodology. Mater. Manuf. Process. 2018, 1–10. DOI: 10.1080/10426914.2018.1476765.
  • Singh, J.; Pandey, P. M. Process optimization for rapid manufacturing of complex geometry electrical discharge machining electrode. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 1–16. DOI: 10.1177/0954406219874845.
  • Myers, R. H.; Montgomery, D. C.; Anderson-Cook, C. M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wiley & Sons: Hoboken, NJ, 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.