435
Views
18
CrossRef citations to date
0
Altmetric
Review

Techniques to weld similar and dissimilar materials by ATIG welding - an overview

ORCID Icon &
Pages 1-16 | Received 07 Jan 2020, Accepted 29 Jun 2020, Published online: 07 Aug 2020

References

  • Rajeev, G. P.; Kamaraj, M.; Bakshi, S. R. Effect of Correction Parameters on Deposition Characteristics in Cold Metal Transfer Welding. Mater. Manuf. Process. Aug 2019, 34(11), 1205–1216. DOI:10.1080/10426914.2019.1628260.
  • Wu, W.; Xue, J.; Yao, P. A Comparative Study on Single- and Double-arc Deposition Processes. Mater. Manuf. Process. Feb 2020, 35(3), 346–353. DOI:10.1080/10426914.2020.1726947.
  • Magudeeswaran, G.; Nair, S. R.; Sundar, L.; Harikannan, N. Optimization of Process Parameters of the Activated Tungsten Inert Gas Welding for Aspect Ratio of UNS S32205 Duplex Stainless Steel Welds. Def. Technol. Sep 2014, 10(3), 251–260. DOI:10.1016/j.dt.2014.06.006.
  • Wu, H.; Chang, Y.; Mei, Q.; Liu, D. Research Advances in High-energy TIG Arc Welding. Int. J. Adv. Manuf. Technol. Sep 2019, 104(1–4), 391–410. DOI:10.1007/s00170-019-03918-5.
  • Modenesi, P. J.; ApolinaÂrio, E. R.; Pereira, I. M. TIG Welding with Single-component ¯uxes. J. Mater. Process. Technol. 2000, 99, 260-265.
  • Feng, C.; Qin, G.; Meng, X.; Geng, P. Defect Evolution of 409L Stainless Steel in High-speed TIG Welding. Mater. Manuf. Process. Jan 2020, 35(2), 179–186. DOI:10.1080/10426914.2020.1711925.
  • Lin, H.-L.; Wu, T.-M. Effects of Activating Flux on Weld Bead Geometry of Inconel 718 Alloy TIG Welds. Mater. Manuf. Process. Dec 2012, 27(12), 1457–1461. DOI:10.1080/10426914.2012.677914.
  • Vora, J. J.; Badheka, V. J. Experimental Investigation on Mechanism and Weld Morphology of Activated TIG Welded Bead-on-plate Weldments of Reduced Activation Ferritic/martensitic Steel Using Oxide Fluxes. J. Manuf. Process. Oct 2015, 20, 224–233. DOI: 10.1016/j.jmapro.2015.07.006.
  • Kumar, S. A.; Sathiya, P. Experimental Investigation of the A-TIG Welding Process of Incoloy 800H. Mater. Manuf. Process. Sep 2015, 30(9), 1154–1159. DOI:10.1080/10426914.2015.1019092.
  • Garg, H.; Sehgal, K.; Lamba, R.; Kajal, G. A Systematic Review: Effect of TIG and A-TIG Welding on Austenitic Stainless Steel. In: Advances in Industrial and Production Engineering; Shanker, K., Shankar, R., Sindhwani, R., Eds.; Springer Singapore: Singapore, 2019; pp 375–385.
  • S, J.; P, C. Flux Bounded Tungsten Inert Gas Welding for Enhanced Weld performance—A Review. J. Manuf. Process. Aug 2017, 28, 116–130. DOI: 10.1016/j.jmapro.2017.05.023.
  • Vora, J. J.; Abhishek, K.; Srinivasan, S. Attaining Optimized A-TIG Welding Parameters for Carbon Steels by Advanced Parameter-less Optimization Techniques: With Experimental Validation. J. Braz. Soc. Mech. Sci. Eng. June 2019, 41(6), 261. DOI:10.1007/s40430-019-1765-0.
  • Santhana Babu, A. V.; Giridharan, P. K.; Ramesh Narayanan, P.; Narayana Murty, S. V. S. Microstructural Investigations on ATIG and FBTIG Welding of AA 2219 T87 Aluminum Alloy. Appl. Mech. Mater. July 2014, 592–594, 489–493. DOI: 10.4028/www.scientific.net/AMM.592-594.489.
  • Balos, S.; Dramicanin, M.; Janjatovic, P.; Zabunov, I.; Klobcar, D.; Busic, M.; Grilli, M. L. Metal Oxide Nanoparticle-Based Coating as a Catalyzer for A-TIG Welding: Critical Raw Material Perspective. Metals May 2019, 9(5), 567. DOI: 10.3390/met9050567.
  • Li, H.; Zou, J.; Yao, J.; Peng, H. The Effect of TIG Welding Techniques on Microstructure, Properties and Porosity of the Welded Joint of 2219 Aluminum Alloy. J. Alloys Compd. Dec 2017, 727, 531–539. DOI: 10.1016/j.jallcom.2017.08.157.
  • Vasudevan, M. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels. J. Mater. Eng. Perform. Mar 2017, 26(3), 1325–1336. DOI:10.1007/s11665-017-2517-x.
  • Shen, J.; Liu, K.; Li, Y.; Li, S. Z.; Wen, L. B. Effects of Fluxes on Distribution of SiC Particles and Microstructures and Mechanical Properties of Nanoparticles Strengthening A-TIG (NSA-TIG) Welded Magnesium Alloy Joints. Sci. Technol. Weld. Join. July 2013, 18(4), 404–413. DOI:10.1179/1362171813Y.0000000112.
  • Vora, J. J.; Badheka, V. J. Experimental Investigation on Microstructure and Mechanical Properties of Activated TIG Welded Reduced Activation Ferritic/martensitic Steel Joints. J. Manuf. Process. Jan 2017, 25, 85–93. DOI: 10.1016/j.jmapro.2016.11.007.
  • Singh, A. K.; Dey, V.; Rai, R. N. A Study to Enhance the Depth of Penetration in Grade P91 Steel Plate Using Alumina as Flux in FBTIG Welding. Arab. J. Sci. Eng. Nov 2017, 42(11), 4959–4970. DOI:10.1007/s13369-017-2605-0.
  • Thomson, J. On Certain Curious Motions at the Surfaces of Wine and Otheralcoholic Liquors. Philos. Mag. (Lond). 1855, 10(67), 330–333.
  • Mills, K. C.; Keene, B. J.; Brooks, R. F.; Shirali, A.; Hondros, E. D.; McLean, M.; Mills, K. C. Marangoni Effects in Welding. Philos. Trans. Math. Phys. Eng. Sci. 1998, 356(1739), 911–925. DOI: 10.1098/rsta.1998.0196.
  • Keene, B. J. Review of Data for the Surface Tension of Pure Metals. Int. Mater. Rev. 1993, 3, 36.
  • Leconte, S.; Paillard, P.; Chapelle, P.; Henrion, G.; Saindrenan, J. Effect of Oxide Fluxes on Activation Mechanisms of Tungsten Inert Gas Process. Sci. Technol. Weld. Join. 2006 Jul, 11(4), 389–397. DOI:10.1179/174329306X129544.
  • Berthier, A.; Paillard, P.; Carin, M.; Valensi, F.; Pellerin, S. TIG and A-TIG Welding Experimental Investigations and Comparison to Simulation: Part 1: Identification of Marangoni Effect. Sci. Technol. Weld. Join. 2012 Nov, 17(8), 609–615. DOI:10.1179/1362171812Y.0000000024.
  • Zuber, M.; Chaudhri, V.; Suri, V. K.; Patil, S. B. Effect of Flux Coated Gas Tungsten Arc Welding on 304L. Int. J. Eng. Technol. 2014, 6(3), 177–181. DOI: 10.7763/IJET.2014.V6.691.
  • Wang, X.; Huang, J.; Huang, Y.; Fan, D.; Guo, Y. Investigation of Heat Transfer and Fluid Flow in Activating TIG Welding by Numerical Modeling. Appl. Therm. Eng. Feb 2017, 113, 27–35. DOI: 10.1016/j.applthermaleng.2016.11.008.
  • Zhao, Y.; Zhou, H.; Shi, Y. The Study of Surface Active Element on Weld Pool Development in A-TIG Welding. Model. Simul. Mater. Sci. Eng. Apr 2006, 14(3), 331–349. DOI:10.1088/0965-0393/14/3/001.
  • Li, D.; Lu, S.; Dong, W.; Li, D.; Li, Y. Study of the Law between the Weld Pool Shape Variations with the Welding Parameters under Two TIG Processes. J. Mater. Process. Technol. Jan 2012, 212(1), 128–136. DOI:10.1016/j.jmatprotec.2011.08.015.
  • Tanaka, M.; Shimizu, T.; Terasaki, T.; Ushio, M.; Koshi-ishi, F.; Yang, C.-L. Effects of Activating Flux on Arc Phenomena in Gas Tungsten Arc Welding. Sci. Technol. Weld. Join. Dec 2000, 5(6), 397–402. DOI:10.1179/136217100101538461.
  • Tseng, K.-H.; Chen, K.-L. Comparisons between TiO2- and SiO2- flux Assisted TIG Welding Processes. J. Nanosci. Nanotechnol. Aug 2012, 12(4), 6359–6367. DOI:10.1166/jnn.2012.6419.
  • Lowke, J. J.; Tanaka, M.; Ushio, M. Mechanisms Giving Increased Weld Depth Due to a Flux. J. Phys. Appl. Phys. Sep 2005, 38(18), 3438–3445. DOI:10.1088/0022-3727/38/18/018.
  • Shah, B.; Madhvani, B. A Review Paper on A-TIG Welding Process. Int. J. Sci. Technol. Eng. 2017, 3(9), 312-315.
  • Venkatesan, G.; George, J.; Sowmyasri, M.; Muthupandi, V. Effect of Ternary Fluxes on Depth of Penetration in A-TIG Welding of AISI 409 Ferritic Stainless Steel. Procedia Mater. Sci. 2014, 5, 2402–2410. DOI: 10.1016/j.mspro.2014.07.485.
  • Zhang, R.-H.; Pan, J.-L.; Katayama, S. The Mechanism of Penetration Increase in A-TIG Welding. Front. Mater. Sci. June 2011, 5(2), 109–118. DOI:10.1007/s11706-011-0125-5.
  • Modenesi, P. J.; Colen Neto, P.; Roberto Apolinário, E.; Batista Dias, K. Effect of Flux Density and the Presence of Additives in ATIG Welding of Austenitic Stainless Steel. Weld. Int. June 2015, 29(6), 425–432. DOI:10.1080/09507116.2014.932982.
  • Tseng, K.-H.; Hsu, C.-Y. Performance of Activated TIG Process in Austenitic Stainless Steel Welds. J. Mater. Process. Technol. Mar 2011, 211(3), 503–512. DOI:10.1016/j.jmatprotec.2010.11.003.
  • Li, Q.; Wang, X.; Zou, Z.; Wu, J. Effect of Activating Flux on Arc Shape and Arc Voltage in Tungsten Inert Gas Welding. Trans. Nonferrous Met. Soc. China June 2007, 17(3), 486–490. DOI:10.1016/S1003-6326(07)60120-4.
  • Huang, H. Y.; Shyu, S. W.; Tseng, K. H.; Chou, C. P. Evaluation of TIG Flux Welding on the Characteristics of Stainless Steel. Sci. Technol. Weld. Join. Sep 2005, 10(5), 566–573. DOI:10.1179/174329305X48329.
  • Jayakrishnan, S.; Chakravarthy, P.; Muhammed Rijas, A. Effect of Flux Gap and Particle Size on the Depth of Penetration in FBTIG Welding of Aluminium. Trans. Indian Inst. Met. July 2017, 70(5), 1329–1335. DOI:10.1007/s12666-016-0929-1.
  • Schwemmer, D. D. The Relationship of Weld Penetration to the Welding Flux. Weld. Res. Suppl. 1979, 1, 153–160.
  • Kumar, H.; Ahmad, G. N.; Singh, N. K. Activated Flux TIG Welding of Inconel 718 Super Alloy in Presence of Tri-component Flux. Mater. Manuf. Process. Jan 2019, 34(2), 216–223. DOI:10.1080/10426914.2018.1532581.
  • Manikandan, M.; Raj, A. D.; Kumar, M. S.; Arivazhagan, N.; Gunachandran, R.; Kumar, J. K. M.; Vignesh, V.; Yoganathan, D. Investigation on Microstructure, Micro Segregation and Mechanical Properties of ATIG Welded Alloy C-276. Mater. Today Proc. 2018, 5(2), 6702–6710. DOI: 10.1016/j.matpr.2017.11.327.
  • Marya, M.; Edwards, G. R. Chloride Contributions in Flux-Assisted GTA Welding of Magnesium Alloys, 2002, 291-298.
  • Parshin, S. G.; Parshin, S. S.; Buerkner, G. Increasing the Productivity of TIG Welding of Steels and Aluminium Alloys by Adding Ultrafine Particles of Activating Fluxes. Weld. Int. May 2013, 27(5), 392–396. DOI:10.1080/09507116.2012.715931.
  • Singh, B. Review on Effect of Flux Composition on Its Behavior and Bead Geometry in Submerged Arc Welding (SAW). J. Mech. Eng. Res. Oct 2013, 5(7), 123–127. DOI:10.5897/JMER2013.0284.
  • Sharma, L.; Kumar, J.; Chhibber, R. Experimental Investigation on Surface Behaviour of Submerged Arc Welding Fluxes Using Basic Flux System. Ceram. Int. Apr 2020, 46(6), 8111–8121. DOI:10.1016/j.ceramint.2019.12.038.
  • Patel, D.; Soman, S. N. Develop a Flux Cored Wire for Submerged Arc Welding of Ni-Mo Low Alloy Steel. Sādhanā Dec 2020, 45(1), 127. DOI:10.1007/s12046-020-01362-w.
  • Kumar, A.; Maheshwari, S.; Kumar Sharma, S. Optimization of Vickers Hardness and Impact Strength of Silica Based Fluxes for Submerged Arc Welding by Taguchi Method. Mater. Today Proc. 2015, 2(4–5), 1092–1101. DOI: 10.1016/j.matpr.2015.07.014.
  • Tseng, K.-H.; Lin, P.-Y. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides. Materials June 2014, 7(6), 4755–4772. DOI:10.3390/ma7064755.
  • Xie, X.; Shen, J.; Cheng, L.; Li, Y.; Pu, Y. Effects of Nano-particles Strengthening Activating Flux on the Microstructures and Mechanical Properties of TIG Welded AZ31 Magnesium Alloy Joints. Mater. Des. Sep 2015, 81, 31–38. DOI: 10.1016/j.matdes.2015.05.024.
  • Mondal, A.; Kumar Saha, M.; Hazra, R.; Das, S. Influence of Heat Input on Weld Bead Geometry Using Duplex Stainless Steel Wire Electrode on Low Alloy Steel Specimens. Cogent Eng. Feb 2016, 3(1). DOI:10.1080/23311916.2016.1143598.
  • Chandrasekhar, N.; Vasudevan, M. Intelligent Modeling for Optimization of A-TIG Welding Process. Mater. Manuf. Process. Dec 2010, 25(11), 1341–1350. DOI:10.1080/10426914.2010.529584.
  • Korra, N. N.; Vasudevan, M.; Balasubramanian, K. R. Multi-objective Optimization of Activated Tungsten Inert Gas Welding of Duplex Stainless Steel Using Response Surface Methodology. Int. J. Adv. Manuf. Technol. Mar 2015, 77(1–4), 67–81. DOI:10.1007/s00170-014-6426-y.
  • Lin, H.-L. Optimization of Inconel 718 Alloy Welds in an Activated GTA Welding via Taguchi Method, Gray Relational Analysis, and a Neural Network. Int. J. Adv. Manuf. Technol. July 2013, 67(1–4), 939–950. DOI:10.1007/s00170-012-4538-9.
  • Neethu, N.; Togita, R. G.; Neelima, P.; Chakravarthy, P.; Narayana Murty, S. V. S.; Nair, M. T. Effect of Nature of Flux and Flux Gap on the Depth-to-Width Ratio in Flux-Bounded TIG Welding of AA6061: Experiments and Numerical Simulations. Trans. Indian Inst. Met. June 2019, 72(6), 1585–1588. DOI:10.1007/s12666-019-01654-8.
  • Fujii, H.; Sato, T.; Lu, S.; Nogi, K. Development of an Advanced A-TIG (AA-TIG) Welding Method by Control of Marangoni Convection. Mater. Sci. Eng. A Nov 2008, 495(1–2), 296–303. DOI:10.1016/j.msea.2007.10.116.
  • Anderson, P. C. J.; Wiktorowicz, R. Improving Productivity with A-TIG Welding, 1996, 64(3), 108–109.
  • Mills, K. C.; Keene, B. J. Factors Affecting Variable Weld Penetration. Int. Mater. Rev. Jan 1990, 35(1), 185–216. DOI:10.1179/095066090790323966.
  • Huang, H.-Y. Argon-Hydrogen Shielding Gas Mixtures for Activating Flux-Assisted Gas Tungsten Arc Welding. Metall. Mater. Trans. A Nov 2010, 41(11), 2829–2835. DOI:10.1007/s11661-010-0361-9.
  • Huang, H.-Y. Effects of Shielding Gas Composition and Activating Flux on GTAW Weldments. Mater. Des. Aug 2009, 30(7), 2404–2409. DOI:10.1016/j.matdes.2008.10.024.
  • Sawickij, M. M.; Mielniczuk, G. M.; Lupan, A. F.; Sawickij, A. M.; Olejnik, O. I. Activating Fluxes in Inert Gas‐shield Welding of Steels. Weld. Int. Jan 2001, 15(9), 677–683. DOI:10.1080/09507110109549424.
  • Babbar, A.; Kumar, A.; Jain, V.; Gupta, D. Enhancement of Activated Tungsten Inert Gas (A-TIG) Welding Using Multi-component TiO2-SiO2-Al2O3 Hybrid Flux. Measurement Dec 2019, 148, 106912. DOI: 10.1016/j.measurement.2019.106912.
  • Morisada, Y.; Fujii, H.; Xukun, N. Development of Simplified Active Flux Tungsten Inert Gas Welding for Deep Penetration. Mater. Des. 1980-2015 Feb 2014, 54, 526–530. DOI: 10.1016/j.matdes.2013.08.081.
  • Saidov, R.; Mourton, H.; Le Gall, R.; Saindrenan, G. A‐TIG Welding of UR 52N+ Superduplex Stainless Steel. Weld. Int. Jan 2000, 14(8), 633–639. DOI:10.1080/09507110009549241.
  • Chern, T.-S.; Tseng, K.-H.; Tsai, H.-L. Study of the Characteristics of Duplex Stainless Steel Activated Tungsten Inert Gas Welds. Mater. Des. Jan 2011, 32(1), 255–263. DOI:10.1016/j.matdes.2010.05.056.
  • Dhandha, K. H.; Badheka, V. J. Effect of Activating Fluxes on Weld Bead Morphology of P91 Steel Bead-on-plate Welds by Flux Assisted Tungsten Inert Gas Welding Process. J. Manuf. Process. Jan 2015, 17, 48–57. DOI: 10.1016/j.jmapro.2014.10.004.
  • Srirangan, A. K.; Paulraj, S. Multi-response Optimization of Process Parameters for TIG Welding of Incoloy 800HT by Taguchi Grey Relational Analysis. Eng. Sci. Technol. Int. J. June 2016, 19(2), 811–817. DOI:10.1016/j.jestch.2015.10.003.
  • Chandrasekar, G.; Kailasanathan, C.; Verma, D. K. Investigation on Un-peened and Laser Shock Peened Weldment of Inconel 600 Fabricated by ATIG Welding Process. Mater. Sci. Eng. A Apr 2017, 690, 405–417. DOI: 10.1016/j.msea.2017.03.008.
  • Lin, H.-L.; Wu, T.-M.; Cheng, C.-M. Effects of Flux Precoating and Process Parameter on Welding Performance of Inconel 718 Alloy TIG Welds. J. Mater. Eng. Perform. Jan 2014, 23(1), 125–132. DOI:10.1007/s11665-013-0756-z.
  • Ramkumar, K. D.; Ramanand, R.; Ameer, A.; Simon, K. A.; Arivazhagan, N. Effect of Post Weld Heat Treatment on the Microstructure and Tensile Properties of Activated Flux TIG Welds of Inconel X750. Mater. Sci. Eng. A Mar 2016, 658, 326–338. DOI: 10.1016/j.msea.2016.02.022.
  • Ramkumar, K. D.; Paul, N.; Chungath, T; Ali, I. M.; Vishnu, C.; Sujai, S.; Arivazhagan, N. Characterization of Microstructure, Tensile Strength and Corrosion Behavior of Autogenous GTA Welds of Inconel X750 with and without Activated Compound Flux. Metallogr. Microstruct. Anal. Oct 2017, 6(5), 407–424. DOI: 10.1007/s13632-017-0375-4.
  • Nayee, S. G.; Badheka, V. J. Effect of Oxide-based Fluxes on Mechanical and Metallurgical Properties of Dissimilar Activating Flux Assisted-Tungsten Inert Gas Welds. J. Manuf. Process. Jan 2014, 16(1), 137–143. DOI:10.1016/j.jmapro.2013.11.001.
  • Patel, N. P.; Badheka, V. J.; Vora, J. J.; Upadhyay, G. H. Effect of Oxide Fluxes in Activated TIG Welding of Stainless Steel 316LN to Low Activation Ferritic/Martensitic Steel (LAFM) Dissimilar Combination. Trans. Indian Inst. Met. June 2019, 72, 2753–2761. DOI: 10.1007/s12666-019-01752-7.
  • Vasudevan, M. Prof. Placid Rodriquez Memorial Lecture, 2016, p. 13.
  • Kulkarni, A.; Dwivedi, D. K.; Vasudevan, M. Study of Mechanism, Microstructure and Mechanical Properties of Activated Flux TIG Welded P91 Steel-P22 Steel Dissimilar Metal Joint. Mater. Sci. Eng. A July 2018, 731, 309–323. DOI: 10.1016/j.msea.2018.06.054.
  • Arunkumar, V.; Vasudevan, M.; Maduraimuthu, V.; Muthupandi, V. Effect of Activated Flux on the Microstructure and Mechanical Properties of 9Cr-1Mo Steel Weld Joint. Mater. Manuf. Process. Nov 2012, 27(11), 1171–1177. DOI:10.1080/10426914.2011.610212.
  • Chandrasekar, G.; Kailasanathan, C.; Verma, D. K.; Nandagopal, K. Optimization of Welding Parameters, Influence of Activating Flux and Investigation on the Mechanical and Metallurgical Properties of Activated TIG Weldments of AISI 316 L Stainless Steel. Trans. Indian Inst. Met. Apr 2017, 70(3), 671–684. DOI:10.1007/s12666-017-1046-5.
  • Bonnfois, B.; Coudreue, L.; Charles, J. A-TIG Welding of High Nitrogen Alloyed Stainless Steels: A Metallurgically High-performance Welding Process, 2010, (18:3), 208-212.
  • Patel, N. P.; Badheka, V. J.; Vora, J. J.; Upadhyay, G. H. Effect of Oxide Fluxes in Activated TIG Welding of Stainless Steel 316LN to Low Activation Ferritic/Martensitic Steel (LAFM) Dissimilar Combination. Trans. Indian Inst. Met. Oct 2019, 72(10), 2753–2761. DOI:10.1007/s12666-019-01752-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.