323
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Analysis of low-frequency vibration-assisted bone drilling in reducing thermal injury

ORCID Icon, , , &
Pages 27-38 | Received 29 Mar 2020, Accepted 19 Aug 2020, Published online: 07 Sep 2020

References

  • Lee, J. E.; Chavez, C. L.; Park, J. Parameters Affecting Mechanical and Thermal Responses in Bone Drilling: A Review. J. Biomech. 2018, 71, 4–21. DOI: 10.1016/j.jbiomech.2018.02.025.
  • Liu, Y.; Wu, J.; Zhang, J.; Peng, W.; Liao, W. Numerical and Experimental Analyses on the Temperature Distribution in the Dental Implant Preparation Area When Using a Surgical Guide. J. Prosthodontics. 2018, 27(1), 42–51. DOI: 10.1111/jopr.12488.
  • Aghvami, M.; Brunski, J. B.; Serdar Tulu, U.; Chen, C.; Helms, J. A. A Thermal and Biological Analysis of Bone Drilling. J. Biomech. Eng. 2018, 140(10), 101010. DOI: 10.1115/1.4040312.
  • Feldmann, A.; Gavaghan, K.; Stebinger, M.; Williamson, T.; Weber, S.; Zysset, P. Real-time Prediction of Temperature Elevation during Robotic Bone Drilling Using the Torque Signal. Ann. Biomed. Eng. 2017, 45(9), 2088–2097. DOI: 10.1007/s10439-017-1845-1.
  • Feldmann, A.; Wili, P.; Maquer, G.; Zysset, P. The Thermal Conductivity of Cortical and Cancellous Bone. Eur. Cells Mater. 2018, 35, 25–33. DOI: 10.22203/eCM.v035a03.
  • Möhlhenrich, S. C.; Modabber, A.; Steiner, T.; Mitchell, D. A.; Hölzle, F. Heat Generation and Drill Wear during Dental Implant Site Preparation: Systematic Review. Brit. J. Oral. Max. Surg. 2015, 53(8), 679–689. DOI: 10.1016/j.bjoms.2015.05.004.
  • Li, C.; Zhao, H.; Ma, H.; Hou, Y.; Zhang, Y.; Yang, M.; Zhang, X. Simulation Study on Effect of Cutting Parameters and Cooling Mode on Bone-drilling Temperature Field of Superhard Drill. Int. J. Adv. Manuf. Tech. 2015, 81(9–12), 2027–2038. DOI: 10.1007/s00170-015-7259-z.
  • Sezek, S.; Aksakal, B.; Karaca, F. Influence of Drill Parameters on Bone Temperature and Necrosis: A FEM Modelling and in Vitro Experiments. Comput. Mater. Sci. 2012, 60, 13–18. DOI: 10.1016/j.commatsci.2012.03.012.
  • Chen, Y. C.; Tu, Y. K.; Tsai, Y. J.; Tsai, Y. S.; Yen, C. Y.; Yang, S. C.; Hsiao, C. K. Assessment of Thermal Necrosis Risk Regions for Different Bone Qualities as a Function of Drilling Parameters. Comput. Meth. Prog. Bio. 2018, 162, 253–261. DOI: 10.1016/j.cmpb.2018.05.018.
  • Reingewirtz, Y.; Szmukler‐Moncler, S.; Senger, B. Influence of Different Parameters on Bone Heating and Drilling Time in Implantology. Clin. Oral. Implan. Res. 1997, 8(3), 189–197. DOI: 10.1034/j.1600-0501.1997.080305.x.
  • Soriano, J.; Garay, A.; Ishii, K.; Sugita, N.; Arrazola, P. J.; Mitsuishi, M. A New Surgical Drill Bit Concept for Bone Drilling Operations. Mater. Manuf. Process. 2013, 28(10), 1065–1070. DOI: 10.1080/10426914.2013.811745.
  • Kanaya, H.; Enokida, M.; Uehara, K.; Ueki, M.; Nagashima, H. Thermal Damage of Osteocytes during Pig Bone Drilling: An in Vivo Comparative Study of Currently Available and Modified Drills. Arch. Orthop. Traum. Su. 2019, 139(11), 1599–1605. DOI: 10.1007/s00402-019-03239-y.
  • Bertollo, N.; Milne, H. R. M.; Ellis, L. P.; Stephens, P. C.; Gillies, R. M.; Walsh, W. R. A Comparison of the Thermal Properties of 2-and 3-fluted Drills and the Effects on Bone Cell Viability and Screw Pull-out Strength in an Ovine Model. Clin. Biomech. 2010, 25(6), 613–617. DOI: 10.1016/j.clinbiomech.2010.02.007.
  • Akhbar, M. F. A.; Yusoff, A. R. Multi-objective Optimization of Surgical Drill Bit to Minimize Thermal Damage in Bone-drilling. Appl. Therm. Eng. 2019, 157, 113594. DOI: 10.1016/j.applthermaleng.2019.04.004.
  • Zhang, Y.; Xu, L.; Wang, C.; Chen, Z.; Han, S.; Chen, B.; Chen, J. Mechanical and Thermal Damage in Cortical Bone Drilling in Vivo. Proc. Inst. Mech. Eng. Part H. 2019, 233(6), 621–635. DOI: 10.1177/0954411919840194.
  • Staroveski, T.; Brezak, D.; Udiljak, T. Drill Wear Monitoring in Cortical Bone Drilling. Med. Eng. Phys. 2015, 37(6), 560–566. DOI: 10.1016/j.medengphy.2015.03.014.
  • Gupta, V.; Pandey, P. M. In-situ Tool Wear Monitoring and Its Effects on the Performance of Porcine Cortical Bone Drilling: A Comparative In-vitro Investigation. Mech. Adv. Mater. Mod. Process. 2017, 3(1), 2. DOI: 10.1186/s40759-017-0019-z.
  • Yang, M.; Li, C.; Zhang, Y.; Jia, D.; Zhang, X.; Hou, Y.; Shen, B.; Li, R. Microscale Bone Grinding Temperature by Dynamic Heat Flux in Nanoparticle Jet Mist Cooling with Different Particle Sizes. Mater. Manuf. Process. 2018, 33(1), 58–68. DOI: 10.1080/10426914.2016.1244846.
  • Augustin, G.; Davila, S.; Mihoci, K.; Udiljak, T.; Vedrina, D. S.; Antabak, A. Thermal Osteonecrosis and Bone Drilling Parameters Revisited. Arch. Orthop. Traum. Su. 2008, 128(1), 71–77. DOI: 10.1007/s00402-007-0427-3.
  • Gehrke, S. A.; Aramburú Júnior, J. S.; Pérez‐Albacete Martínez, C.; Ramirez Fernandez, M. P.; Maté Sánchez de Val, J. E.; Calvo‐Guirado, J. L. The Influence of Drill Length and Irrigation System on Heat Production during Osteotomy Preparation for Dental Implants: An Ex Vivo Study. Clin. Oral. Implan. Res. 2018, 29(7), 772–778. DOI: 10.1111/clr.12827.
  • Jamil, M.; Khan, A. M.; Mia, M.; Iqbal, A.; Gupta, M. K.; Sen, B. Evaluating the Effect of Micro-lubrication in Orthopedic Drilling. Proc. Inst. Mech. Eng. Part H. 2019, 233(10), 1024–1041. DOI: 10.1177/0954411919865389.
  • Gok, K.; Buluc, L.; Muezzinoglu, U. S.; Kisioglu, Y. Development of a New Driller System to Prevent the Osteonecrosis in Orthopedic Surgery Applications. J Braz. Soc. Mech. Sci. Eng. 2015, 37(2), 549–558. DOI: 10.1007/s40430-014-0186-3.
  • Boa, K.; Barrak, I.; Varga, E., Jr; Joob-Fancsaly, A.; Varga, E.; Piffko, J. Intraosseous Generation of Heat during Guided Surgical Drilling: An Ex Vivo Study of the Effect of the Temperature of the Irrigating Fluid. Brit. J. Oral. Max. Surg. 2016, 54(8), 904–908. DOI: 10.1016/j.bjoms.2016.06.004.
  • Shakouri, E.; Hassanalideh, H. H.; Gholampour, S. Experimental Investigation of Temperature Rise in Bone Drilling with Cooling: A Comparison between Modes of without Cooling, Internal Gas Cooling, and External Liquid Cooling. Proc. Inst. Mech. Eng. Part H. 2018, 232(1), 45–53. DOI: 10.1177/0954411917742944.
  • Mediouni, M.; Kucklick, T.; Poncet, S.; Madiouni, R.; Abouaomar, A.; Madry, H.; Cucchiarini, M.; Chopko, B.; Vaughan, N.; Arora, M.; et al. An Overview of Thermal Necrosis: Present and Future. Curr. Med. Res. Opin. 2019, 35(9), 1555–1562. DOI: 10.1080/03007995.2019.1603671.
  • Gupta, V.; Pandey, P. M. Experimental Investigation and Statistical Modeling of Temperature Rise in Rotary Ultrasonic Bone Drilling. Med. Eng. Phys. 2016, 38(11), 1330–1338. DOI: 10.1016/j.medengphy.2016.08.012.
  • Sun, Z.; Wang, Y.; Xu, K.; Zhou, G.; Liang, C.; Qu, J. Experimental Investigations of Drilling Temperature of High-energy Ultrasonically Assisted Bone Drilling. Med. Eng. Phys. 2019, 65, 1–7. DOI: 10.1016/j.medengphy.2018.12.019.
  • Yang, H.; Ding, W.; Chen, Y.; Laporte, S.; Xu, J.; Fu, Y. Drilling Force Model for Forced Low Frequency Vibration Assisted Drilling of Ti-6Al-4V Titanium Alloy. Int. J. Mach. Tool Manu. 2019, 146, 103438. DOI: 10.1016/j.ijmachtools.2019.103438.
  • Seeholzer, L.; Voss, R.; Marchetti, L.; Wegener, K. Experimental Study: Comparison of Conventional and Low-frequency Vibration-assisted Drilling (LF-VAD) of CFRP/aluminium Stacks. Int. J. Adv. Manuf. Tech. 2019, 104(1–4), 433–449. DOI: 10.1007/s00170-019-03837-5.
  • Hussein, R.; Sadek, A.; Elbestawi, M. A.; Attia, M. H. Low-frequency Vibration-assisted Drilling of Hybrid CFRP/Ti6Al4V Stacked Material. Int. J. Adv. Manuf. Tech. 2018, 98(9–12), 2801–2817. DOI: 10.1007/s00170-018-2410-2.
  • Okamura, K.; Sasahara, H. Prediction of Drilling Temperature during Low-frequency Vibration Drilling of Titanium Alloy. J. Adv. Mech. Des. Syst. 2017, 11(3), JAMDSM0036. DOI: 10.1299/jamdsm.2017jamdsm0036.
  • Xu, J.; Li, C.; Chen, M.; Ren, F. A Comparison between Vibration Assisted and Conventional Drilling of CFRP/Ti6Al4V Stacks. Mater. Manuf. Process. 2019, 34(10), 1–12. DOI: 10.1080/10426914.2019.1615085.
  • Fletcher, J. W. A.; Williams, S.; Whitehouse, M. R.; Gill, H. S.; Preatoni, E. Juvenile Bovine Bone Is an Appropriate Surrogate for Normal and Reduced Density Human Bone in Biomechanical Testing: A Validation Study. Sci. Rep. 2018, 8(1), 1–9. DOI: 10.1038/s41598-018-28155-w.
  • Akhbar, M. F. A.; Yusoff, A. R. Comparison of Bone Temperature Elevation in Drilling of Human, Bovine and Porcine Bone. Procedia CIRP. 2019, 82, 411–414. DOI: 10.1016/j.procir.2019.03.220.
  • Feldmann, A.; Zysset, P. Experimental Determination of the Emissivity of Bone. Med. Eng. Phys. 2016, 38(10), 1136–1138. DOI: 10.1016/j.medengphy.2016.06.019.
  • Lee, J. E.; Rabin, Y.; Ozdoganlar, O. B. A New Thermal Model for Bone Drilling with Applications to Orthopaedic Surgery. Med. Eng. Phys. 2011, 33(10), 1234–1244. DOI: 10.1016/j.medengphy.2011.05.014.
  • Liao, Z.; Axinte, D.; Gao, D. On Modelling of Cutting Force and Temperature in Bone Milling. J. Mater. Process. Technol. 2019, 266, 627–638. DOI: 10.1016/j.jmatprotec.2018.11.039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.