168
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Effect of melting time on volatility, OH in glass in microwave processing

, &
Pages 426-434 | Received 19 May 2020, Accepted 12 Oct 2020, Published online: 09 Nov 2020

References

  • Shelby, J. Introduction to Glass Science and Technology,Royal Society of Chemistry 2005.
  • Thostenson, E. T.; Chou, T. W. Microwave Processing: Fundamentals and Applications. Compos. Part A Appl. Sci. Manuf. 1999, 30(9), 1055–1071. DOI: 10.1016/S1359-835X(99)00020-2.
  • Singh, S.; Gupta, D.; Jain, V.; Sharma, A. K. Microwave Processing of Materials and Applications in Manufacturing Industries: A Review. Mater. Manuf. Processes. 2015, 30(1), 1–29. DOI: 10.1080/10426914.2014.952028.
  • Oghbaei, M.; Mirzaee, O. Microwave versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications. J. Alloys Compd. 2010, 494(1–2), 175–189. DOI: 10.1016/j.jallcom.2010.01.068.
  • Agrawal, D. Microwave Sintering of Ceramics, Composites and Metallic Materials, and Melting of Glasses. T Indian Ceram. Soc. 2006, 65(3), 129–144. DOI: 10.1080/0371750X.2006.11012292.
  • Schwenke, A. M.; Hoeppener, S.; Schubert, U. S. Synthesis and Modification of Carbon Nanomaterials Utilizing Microwave Heating. Adv. Mater. 2015, 27(28), 4113–4141. DOI: 10.1002/adma.201500472.
  • Binner, E.; Lester, E.; Kingman, S.; Dodds, C.; Robinson, J.; Wu, T.; Wardle, P.; Mathews, J. P. A. Review of Microwave Coal Processing. J. Microw. Power Electromagn. Energy. 2014, 48(1), 35–60. DOI: 10.1080/08327823.2014.11689870.
  • Ghasali, E.; Alizadeh, M.; Ebadzadeh, T. TiO2 Ceramic Particles-Reinforced Aluminum Matrix Composite Prepared by Conventional, Microwave, and Spark Plasma Sintering. J. Compos. Mater. 2018, 52(19), 2609–2619. DOI: 10.1177/0021998317751283.
  • Fujii, T.; Kashimura, K.; Tanaka, H. Microwave Sintering of Fly Ash Containing Unburnt Carbon and Sodium Chloride. J. Hazard. Mater. 2019, 369, 318–323. DOI: 10.1016/j.jhazmat.2018.12.114.
  • Singhal, C.; Murtaza, Q.; Alam, P.; Hasan, F. Structural and Mechanical Properties of Microwave Hybrid Sintered Aluminium Silicon Carbide Composite. Adv. Mater. Process. Technol. 2019, 5(4), 559–567. DOI: 10.1080/2374068X.2019.1636188.
  • Shukla, M.; Ghosh, S. Microwave-Assisted Alumina-Zirconia Brazed Joint for Microwave Tubes. J. Aust. Ceram. Soc. 2019. DOI: 10.1007/s41779-019-00415-6.
  • Tamang, S.; Aravindan, S. Brazing of CBN to WC-Co by Ag-Cu-In-Ti Alloy through Microwave Hybrid Heating for Cutting Tool Application. Mater. Lett. 2019, 254, 145–148. DOI: 10.1016/j.matlet.2019.07.041.
  • Liu, C.; Grimi, N.; Lebovka, N.; Vorobiev, E. Convective Air, Microwave, and Combined Drying of Potato Pre-Treated by Pulsed Electric Fields. Dry. Technol. 2019, 37(13), 1704–1713. DOI: 10.1080/07373937.2018.1536065.
  • Kumar, C.; Karim, M. A. Microwave-Convective Drying of Food Materials: A Critical Review. Crit. Rev. Food Sci. 2019, 59(3), 379–394. DOI: 10.1080/10408398.2017.1373269.
  • Singh, K.; Sharma, S. Fabrication and Investigation of Co-Based and CeO2-Modified Microwave Coatings. Prot. Met. Phys. Chem. Surfaces. 2019, 55(2), 352–358. DOI: 10.1134/S2070205119020266.
  • Babu, A.; Arora, H. S.; Grewal, H. S. Microwave-Assisted Post-processing of Detonation Gun-Sprayed Coatings for Better Slurry and Cavitation Erosion Resistance. J. Therm. Spray. Tech. 2019, 28, 1565–1578. DOI: 10.1007/s11666-019-00914-9.
  • Xi, J.; Yu, Z. Toughening Mechanism of Rubber Reinforced Epoxy Composites by Thermal and Microwave Curing. J. Appl. Polym. Sci. 2018, 135(5), 45767. DOI: 10.1002/app.45767.
  • Kharissova, O. V.; Kharisov, B. I.; Valdés, J. J. R. Review: The Use of Microwave Irradiation in the Processing of Glasses and Their Composites. Ind. Eng. Chem. Res. 2010, 49(4), 1457–1466. DOI: 10.1021/ie9014765.
  • Reinosa, J. J.; García-Baños, B.; Catalá-Civera, J. M.; López-Buendía, A. M.; Guaita, L.; Fernández, J. F. Feasible Glass-melting Process Assisted by Microwaves. Int. J. Appl. Glass. Sci. 2019, 10, 208–219. DOI: 10.1111/ijag.13093.
  • Wang, J. S.; Jeng, J. S.; Ni, C. T. The Study on the Phosphate Glass Melted by Microwave Irradiation. J. Non. Cryst. Solids. 2009, 355(13), 780–784. DOI: 10.1016/j.jnoncrysol.2009.04.002.
  • Almeida, F. J. M.; Martinelli, J. R.; Partiti, C. S. M. Characterization of Iron Phosphate Glasses Prepared by Microwave Heating. J. Non. Cryst. Solids. 2007, 353(52–54), 4783–4791. DOI: 10.1016/j.jnoncrysol.2007.06.051.
  • Murase, I.; Imaeda, K.; Sakurai, M.; Watanabe, M. Formation Mechanism of Branching Structure in Phosphate Glasses Prepared by Microwave Heating. Phosphorus Res. Bull. 2005, 19, 65–70. DOI: 10.3363/prb1992.19.0_65.
  • Chenu, S.; Rocherullé, J.; Lebullenger, R.; Merdrignac, O.; Cheviré, F.; Tessier, F.; Oudadesse, H. Synthesis and Characterization of Tin Containing Molybdophosphate and Tungstophosphate Glasses. J. Non. Cryst. Solids. 2010, 356(2), 87–92. DOI: 10.1016/j.jnoncrysol.2009.11.001.
  • Ghussn, L.; Martinelli, J. R.; Novel, A. Method to Produce Niobium Phosphate Glasses by Microwave Heating. J. Mater. Sci. 2004, 39(4), 1371–1376. DOI: 10.1023/B:JMSC.0000013899.75724.e1.
  • Mahmoud, M. M.; Folz, D. C.; Suchicital, C. T. A.; Clark, D. E. Crystallization of Lithium Disilicate Glass Using Microwave Processing. J. Am. Ceram. Soc. 2012, 95(2), 579–585. DOI: 10.1111/j.1551-2916.2011.04936.x.
  • Venkateswaran, C.; Sharma, S. C.; Chauhan, V. S.; Vaish, R. Near-Zero Thermal Expansion Transparent Lithium Aluminosilicate Glass-Ceramic by Microwave Hybrid Heat Treatment. J. Am. Ceram. Soc. 2018, 101(1), 140–150. DOI: 10.1111/jace.15178.
  • Davis, C.; Pertuit, A. L.; Nino, J. C. Effect of Microwave Processing on the Crystallization and Energy Density of BaO–Na2O–Nb2O5–SiO2–B2O3 Glass-ceramics. J. Am. Ceram. Soc. 2017, 100, 765–773. DOI: 10.1111/jace.14485.
  • Mandal, A. K.; Sen, R. An Overview on Microwave Processing of Material: A Special Emphasis on Glass Melting. Mater. Manuf. Processes. 2017, 32(1), 1–20. DOI: 10.1080/10426914.2016.1151046.
  • Mandal, A. K.; Sen, S.; Mandal, S.; Guha, C.; Sen, R. Energy Efficient Melting of Glass for Nuclear Waste Immobilization Using Microwave Radiation. Int. J. Green Energy. 2015, 12(12), 1280–1287. DOI: 10.1080/15435075.2014.895735.
  • Mandal, A. K.; Biswas, K.; Annapurna, K.; Guha, C.; Sen, R. Preparation of Alumino-Phosphate Glass by Microwave Radiation. J. Mater. Res. 2013, 28(14), 1955–1961. DOI: 10.1557/jmr.2013.168.
  • Mandal, A. K.; Sen, R. Preservation of Higher Fe[II] Content in Borosilicate Glass by Microwave Irradiation in Air. Mater. Res. Bull. 2018, 108, 156–162. DOI: 10.1016/j.materresbull.2018.08.034.
  • Mandal, A. K.; Sinha, P. K.; Das, D.; Guha, C.; Sen, R. Higher Fe2+/Total Fe Ratio in Iron Doped Phosphate Glass Melted by Microwave Heating. Mater. Res. Bull. 2015, 63, 141–146. DOI: 10.1016/j.materresbull.2014.11.052.
  • Mandal, A. K.; Mandal, B.; Illath, K.; Ajithkumar, T. G.; Halder, A.; Sinha, P. K.; Sen, R. Preparation of Colourless Phosphate Glass by Stabilising Higher Fe[II] in Microwave Heating. Sci. Rep. 2018, 8(1), 1–13. DOI: 10.1038/s41598-018-24287-1.
  • Mandal, A. K.; Balaji, S.; Sen, R. Microwave and Conventional Preparation of Zinc Borate Glass: Eu 3+ Ion as Luminescent Probe. J. Alloys Compd. 2014, 615, 283–289. DOI: 10.1016/j.jallcom.2014.06.206.
  • Mitra, B.; Sinha, B. C. A Rapid Method for Accurate Determination of Boron in Glass, Enamel and Other Silicate Materials. T. Indian Ceram. Soc. 1987, 46(5), 132–135. DOI: 10.1080/0371750X.1987.10822854.
  • Venkatesh, K.; Chhillar, S.; Kamble, G. S.; Pandey, S. P.; Venkatesh, M.; Kumar, S. A.; Kumar, S.; Acharya, R.; Pujari, P. K.; Reddy, A. V. R. Determination of Boron Concentration in Borosilicate Glass, Boron Carbide and Graphite Samples by Conventional Wet-Chemical and Nuclear Analytical Methods. J. Radioanal. Nucl. Chem. 2014, 302(3), 1425–1428. DOI: 10.1007/s10967-014-3552-9.
  • Sinha, B. C.; Dasgupta, S.; Critical, A. Study of the Alkalimetric Titration of Mannitoboric Acid Complex in Relation to the Determination of Boron in Glass and Related Materials. Glas. Technol. 1976, 17(1), 31–34.
  • Mandal, A. K.; Agrawal, D.; Sen, R. Preparation of Homogeneous Barium Borosilicate Glass Using Microwave Energy. J. Non. Cryst. Solids. 2013, 371–372, 41–46. DOI: 10.1016/j.jnoncrysol.2013.04.044.
  • Snoeks, E.; Kik, P. G.; Polman, A. Concentration Quenching in Erbium Implanted Alkali Silicate Glasses. Opt. Mater. 1996, 5(3), 159–167. DOI: 10.1016/0925-3467(95)00063-1.
  • Ebendorff-Heidepriem, H.; Seeber, W.; Ehrt, D. Dehydration of Phosphate Glasses. J. Non. Cryst. Solids. 1993, 163(1), 74–80. DOI: 10.1016/0022-3093(93)90647-G.
  • Toratani, H.; Meer, H. E.; Izumitani, T.; Stokowski, S. E. Phosphate Laser Glass of Absorption Loss of 10-4cm-1. J. Non. Cryst. Solids. 1987, 95–96(PART 2), 701–708. DOI: 10.1016/S0022-3093(87)80671-3.
  • Mandal, A. K.; Sen, R. Optimization of Melting Parameters and Minimizing OH Content in SiO2-B2O3-Na2O-BaO Glass System in Microwave Heating. Int. J. Appl. Glas. Sci. 2019, 10(1), 83–91. DOI: 10.1111/ijag.12439.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.