261
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Enhancing machining rate and geometrical accuracy in electrochemical micromachining of Co-Ni-Cr-W superalloy

ORCID Icon, & ORCID Icon
Pages 488-500 | Received 29 Jun 2020, Accepted 22 Oct 2020, Published online: 09 Nov 2020

References

  • Rajurkar, K. P.; Sundaram, M. M.; Malshe, A. P. Review of Electrochemical and Electrodischarge Machining. Proc. CIRP. 2013, 6, 13–26. DOI: 10.1016/j.procir.2013.03.002.
  • Bhattacharyya, B.; Munda, J.; Malapati, M. Advancement in Electrochemical Micro-machining. Int. J. Mach. Tool Manuf. 2004, 44, 1577–1589. DOI: 10.1016/j.ijmachtools.2004.06.006.
  • Kibria, G.; Bhattacharyya, B. Accuracy Enhancement Technologies for Micromachining Processes; Springer: Singapore, 2020.
  • Rathod, V.; Doloi, B.; Bhattacharyya, B. Sidewall Insulation of Microtool for Electrochemical Micromachining to Enhance the Machining Accuracy. Mater. Manuf. Processes. 2014, 29(3), 305–313. DOI: 10.1080/10426914.2013.864407.
  • Thanigaivelan, R.; Arunachalam, R. Experimental Study on the Influence of Tool Electrode Tip Shape on Electrochemical Micromachining of 304 Stainless Steel. Mater. Manuf. Processes. 2010, 25(10), 1181–1185. DOI: 10.1080/10426914.2010.508806.
  • Mithu, M. A. H.; Fantoni, G.; Ciampi, J. How Microtool Dimension Influences Electrochemical Micromachining. Int. J. Adv. Manuf. Tech. 2014, 70, 1303–1312. DOI: 10.1007/s00170-013-5346-6.
  • Mi., D.; Natsu, W. Design of ECM Tool Electrode with Controlled Conductive Area Ratio for Holes with Complex Internal Features. Precis. Eng. 2017, 47, 54–61. DOI: 10.1016/j.precisioneng.2016.07.004.
  • Bhattacharyya, B.;. Electrochemical Micromachining for Nanofabrication, MEMS and Nanotechnology; Elsevier: Oxford, USA, 2015.
  • Jain, V. K.; Rajurkar, K. P. An Integrated Approach for Tool Design in ECM.J. Precis. Eng. 1991, 13(2), 111–124. DOI: 10.1016/0141-6359(91)90502-A.
  • Volgin, V. M.; Lyubimova, V. V.; Gnidinaa, I. V.; Davydovb, A. D.; Kabanova, T. B. Effect of Current Efficiency on Electrochemical Micromachining by Moving Electrode. 5th CIRP Global Web Conference Research and Innovation for Future Production. Proc. CIRP. 2016, 65–70. DOI: 10.1016/j.procir.2016.08.031.
  • Rathod, V.; Doloi, B.; Bhattacharyya, B. Influence of Electrochemical Micromachining Parameters during Generation of Microgrooves. Int. J. Adv. Manuf. Tech. 2013, 76(1–4), 51–60. DOI: 10.1007/s00170-013-5304-3..
  • Kunar, S.; Bhattacharyya, B. Investigation into Fabrication of Microslot Arrays by Electrochemical Micromachining. Mater. Sci. Technol. 2019, 23(4), 629–649. DOI: 10.1080/10910344.2019.1575406.
  • Wang, K.; Shen, Q.; He, B. Localized Electrochemical Deburring of Cross Hole Using Gelatinous Electrolyte. Mater. Manuf. Processes. 2016, 31(13), 1749–1754. DOI: 10.1080/10426914.2015.1117620.
  • Koushik, M.; Sarkar, B. R.; Bhattacharyya, B. Influence of Different Featured Tools on Machining Accuracy in Electrochemical Milling. J Eng. Manuf. 2019, 1(11). DOI: 10.1177/0954405419892798.
  • Schneider, M.; Schubert, N.; Hohn, S.; Michaelis, A. Anodic Dissolution of Cobalt in Aqueous Sodium Nitrate Solution at High Current Densities. Mater. Corros. 2014. DOI: 10.1002/maco.201407638.
  • Binggong., Y.; Xuan, S.; Zhao, T.; Xiaodi, H.; Kaiyong, J. 3D Printed Flexible Cathode Based on Cu-EDTA that Prepared by Molecular Precursor Method and Microwave Processing for Electrochemical Machining. J Electrochem. Sci. Te. 2020, 11(2), 180–186. DOI: 10.33961/jecst.2019.00549.
  • Yilbas, B. S.; Akhtar. Laser Cutting of Alloy Steel: Three-Dimensional Modeling of Temperature and Stress Fields. Mater. Manuf. Processes. 2011, 26(1), 104–112. DOI: 10.1080/10426914.2010.501092.
  • Makino, Y.; Honda, K.; Kimura, S. High-temperature Mechanical Properties of Laser Welds in Co-base Superalloy and Its Improvement by Laser Surface Melting. Weld. Int. 1999, 13(8), 612–620. DOI: 10.1080/09507119909447421.
  • Helminiak, M. A.; Yanar, N. M.; Pettit, F. S.; Taylor, T. A.; Meier, G. H. The Effect of Superalloy Substrate on the Behaviour of High-purity Low-density Air Plasma Sprayed Thermal Barrier Coating. Mater. High Temp. 2012, 29(3), 264 271. DOI: 10.3184/096034012X13335310236212.
  • Hicks, B.;. High-temperature Sheet Materials for Gas Turbine Applications. Mater. Sci. Technol. 1987, 3(9), 772–781. DOI: 10.1179/mst.1987.3.9.772.
  • Huang, S. F.; Liu, Y. Electrochemical Micromachining of Complex Shapes on Nickel and Nickel-based Superalloys. Mater. Manuf. Processes. 2014, 29, 1483–1487. DOI: 10.1080/10426914.2014.930897.
  • Hariharan, P.; Shamli, C. S.; Rajkeerthi, E.; Shruthilaya, H.; Yuvaraj, N. Influence of Process Parameters on Electrochemical Micromachining of Nimonic 75 Alloy. Proceedings of the American Society of Mechanical Engineers, International Mechanical Engineering Congress and Exposition, Issue, Advanced Manufacturing. 2017, 2, IMECE2017-71147. DOI: 10.1115/IMECE2017-71147
  • Pradeep, N.; Shanmuga Sundaram, K.; Pradeep Kumar, M. Performance Investigation of Variant Polymer Graphite Electrodes Used in Electrochemical Micromachining of ASTM A240 Grade 304. Mater. Manuf. Processes. 2020, 35(1), 72–85. DOI: 10.1080/10426914.2019.1697445.
  • Kunar, S.; Rajkeerthi, E.; Mandal, K.; Bhattacharyya, B. Fabrication of Array of Micro Circular Impressions Using Different Electrolytes by Maskless Electrochemical Micromachining. J. Manuf. Rev. 2020, 7, 15. DOI: 10.1051/mfreview/2020012.
  • Mishra, K.; Sarkar, B. R.; Bhattacharyya, B. Influence of Inner-spraying Rotating Tool during Electrochemical Milling of Nimonic-263 Alloy. Mater. Manuf. Processes. 2019, 34(7), 807–813. DOI: 10.1080/10426914.2019.1594277.
  • Kunar, S.; Bhattacharyya, B. Electrochemical Micromachining of Micro Square Pattern Using Reusable Masked Tool. Mater. Manuf. Processes. 2018, 34(5), 487–493. DOI: 10.1080/10426914.2018.1532582.
  • Thanigaivelan, R.; Arunachalam, R. M.; Kumar, M.; Dheeraj, B. P. Performance of Electrochemical Micromachining of Copper through Infrared Heated Electrolyte. Mater. Manuf. Processes. 2017, 33(4), 383–389. DOI: 10.1080/10426914.2017.1279304.
  • Pradeep, N.; Shanmuga Sundaram, K.; Pradeep Kumar, M. Multiresponse Optimization of Electrochemical Micromachining Parameters in SS304 Using Polymer Graphite Electrode with NaNO3 Electrolyte Based on TOPSIS Technique. J. Braz. Soc. Mech. Sci. Eng. 2019, 41(323), 1–10. DOI: 10.1007/s40430-019-1823-7.
  • Soundarrajan, M.; Thanigaivelan, R. Effect of Coated and Geometrically Modified Tools on Performance of Electrochemical Micromachining. Mater. Manuf. Processes. 2020, 35(7), 775–782. DOI: 10.1080/10426914.2020.1740252.
  • Haynes 188 alloy. https://www.haynesintl.com/alloys/alloy-portfolio_/High-temperature-Alloys/HAYNES188alloy.aspx (accessed June 23, 2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.