390
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Optimization of photochemical machining process for fabrication of microchannels with obstacles

, ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 544-557 | Received 05 Jul 2020, Accepted 13 Oct 2020, Published online: 22 Dec 2020

References

  • Lim, Y. C.; Kouzani, A. Z.; Duan, W. Lab-on-a-chip: A Component View. Microsyst. Technol. 2015, 16, 1995–2015. DOI: 10.1007/s00542-010-1141-6.
  • Das, S. S.; Tilekar, S. D.; Wangikar, S. S.; Patowari, P. K. Numerical and Experimental Study of Passive Fluids Mixing in Micro-channels of Different Configurations. Microsyst. Technol. 2017, 23 (12), 5977–5988. DOI:10.1007/s00542-017-3482-x.
  • Lin, Y. C.; Chung, Y. C.; Wu, C. Y. Mixing Enhancement of the Passive Microfluidic Mixer with J-shaped Baffles in the Tee Channel. Biomed. Microdevices. 2007, 9, 215–221. DOI: 10.1007/s10544-006-9023-5.
  • Jain, M.; Rao, A.; Nandakumar, K. Numerical Study on Shape Optimization of Groove Micromixers. Microfluid. Nanofluid. 2013, 15, 689–699. DOI: 10.1007/s10404-013-1169-x.
  • Chung, C. K.; Wu, C. Y.; Shih, T. R. Effect of Baffle Height and Reynolds Number on Fluid Mixing. Microsyst. Technol. 2008, 14, 1317–1323. DOI: 10.1007/s00542-007-0511-1.
  • Wangikar, S. S.; Patowari, P. K.; Misra, R. D. Numerical and Experimental Investigations on the Performance of a Serpentine Microchannel with Semicircular Obstacles. Microsyst. Technol. 2018, 24 (8), 3307–3320. DOI:10.1007/s00542-018-3799-0.
  • Faustino, V.; Catarino, S. O.; Lima, R.; Minas, G. Biomedical Micro Fluidic Devices by Using Low-cost Fabrication Techniques: A Review. J. Biomech. 2016, 49, 2280–2292. DOI: 10.1016/j.jbiomech.2015.11.031.
  • Lee, S. Y.; Wereley, S. T.; Gui, L.; Qu, W.; Mudawar, I. Microchannel Flow Measurement Using Micro Particle Image Velocimetry. In ASME International Mechanical Engineering Congress and Exposition, 2002; Vol. 36576, pp. 493–500. DOI: 10.1115/IMECE2002-33682
  • Mogra, A.; Verma, S. K.; Thomas, T. Fabrication of Square Microchannel for Experimental Investigation of Two Phase Flow Using Conventional Machining Process. Perspect. Sci. 2016, 8, 231–233. DOI: 10.1016/j.pisc.2016.04.036.
  • Prakash, S.; Kumar, S. Fabrication of Microchannels: A Review. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2015, 229 (8), 1273–1288. DOI:10.1177/0954405414535581.
  • Debnath, T.; Patowari, P. K. Fabrication of an Array of Micro-fins Using Wire- EDM and Its Parametric Analysis. Mater. Manuf. Processes. 2017, 34(5), 580–589. DOI: 10.1080/10426914.2019.1566959.
  • Chen, X.; Qu, N.; Hou, Z.; Wang, X.; Zhu, D. Friction Reduction of Chrome-Coated Surface with Micro-Dimple Arrays Generated by Electrochemical Micromachining. J. Mater. Eng. Perform. 2017, 26, 667–675. DOI: 10.1007/s11665-017-2501-5.
  • Chen, X.; Li, T.; Hu, Z. A Novel Research on Serpentine Microchannels of Passive Micromixers. Microsyst. Technol. 2017, 23 (7), 2649–2656. DOI:10.1007/s00542-016-3060-7.
  • Farshchian, B.; Amirsadeghi, A.; Choi, J.; Park, D. S.; Kim, N.; Park, S. 3D Nanomolding and Fluid Mixing in Micromixers with Micro - Patterned Microchannel Walls. Nano Convergence. 2017, 4 (1), 1–9. DOI:10.1186/s40580-017-0098-x.
  • Modica, F.; Basile, V.; Marrocco, V.; Fassi, I. A. New Process Combining Micro- Electro-Discharge-Machining Milling and Sinking for Fast Fabrication of Microchannels with Draft Angle. J Micro Nano Manuf. 2016, 4 (2), 024501 (1–8). DOI:10.1115/1.4032324.
  • Shukla, A. K.; Jayachandran, S.; Bhoyar, J. V.; Akash, K.; Mani Prabhu, S. S.; Bhirodkar, S. L.; Manikandan, M.; Shiva, S.; Palani, I. A. Micro-channel Fabrication on NiTi Shape Memory Alloy Substrate Using Nd3+: YAG Laser. Mater. Manuf. Processes. 2020, 35(3), 270–278. DOI: 10.1080/10426914.2020.1718703.
  • Saeed, M. U.; Li, B.; Chen, Z.; Cui, S. Fabrication of Microchanneled Composites by Novel Selective Polymer Degradation. Mater. Manuf. Processes. 2016, 31(15), 2057–2063. DOI: 10.1080/10426914.2016.1198016.
  • Saranya, S.; Sankar, A. R. Fabrication of Precise Microchannels Using a Side-insulated Tool in a Spark Assisted Chemical Engraving Process. Mater. Manuf. Processes. 2018, 33(13), 1422–1428. DOI: 10.1080/10426914.2017.1401728.
  • Sahu, A. K.; Jha, S. Microchannel Fabrication and Metallurgical Characterization on Titanium by Nanosecond Fiber Laser Micromilling. Mater. Manuf. Processes. 2020, 35(3), 279–290. DOI: 10.1080/10426914.2020.1718702.
  • Agrawal, D.; Kamble, D. Optimization of Photochemical Machining Process Parameters for Manufacturing Microfluidic Channel. Mater. Manuf. Processes. 2019, 34(1), 1–7. DOI: 10.1080/10426914.2018.1512115.
  • Bhagat, A. A. S.; Peterson, E. T. K.; Papautsky, I. A Passive Planar Micromixer with Obstructions for Mixing at Low Reynolds Numbers. J. Micromech. Microeng. 2007, 17(5), 1017–1024. DOI: 10.1088/0960-1317/17/5/023.
  • Gamage, J. R.; De Silva, A. K. M. Assessment of Research Needs for Sustainability of Unconventional Machining Processes. Procedia CIRP. 2015, 26, 385–390. DOI: 10.1016/j.procir.2014.07.096.
  • Çakir, O.; Temel, H.; Kiyak, M. Chemical Etching of Cu-ETP Copper. J. Mater. Process. Technol. 2005, 162–163, 275–279. DOI: 10.1016/j.jmatprotec.2005.02.035.
  • Wangikar, S. S.; Patowari, P. K.; Misra, R. D. Effect of Process Parameters and Optimization for Photochemical Machining of Brass and German Silver. Mater. Manuf. Processes. 2017, 32(15), 1747–1755. DOI: 10.1080/10426914.2016.1244848.
  • Wangikar, S. S.; Patowari, P. K.; Misra, R. D. Parametric Optimization for Photochemical Machining of Copper Using Grey Relational Method. In Techno-Societal 2016 Proceedings of the International Conference on Advanced Technologies for Societal Applications; Pawar, P., Ronge, B., Balasubramaniam, R., Seshabhattar, S., Eds.; Springer Cham: Switzerland, 2018; pp 933–943. DOI: 10.1007/978-3-319-53556-2_94.
  • Saraf, A. R.; Sadaiah, M. Magnetic Field-assisted Photochemical Machining (MFAPCM) of SS316L. Mater. Manuf. Processes. 2017, 32(3), 327–332. DOI: 10.1080/10426914.2016.1198014.
  • Patil, D. H.; Mudigonda, S. Investigation on Effect of Grain Orientation in Photochemical Machining of Monel 400. Mater. Manuf. Processes. 2017, 32(16), 1831–1837. DOI: 10.1080/10426914.2017.1291953.
  • Misal, N. D.; Saraf, A. R.; Sadaiah, M. Experimental Investigation of Surface Topography in Photochemical Machining of Inconel 718. Mater. Manuf. Processes. 2017, 32(15), 1756–1763. DOI: 10.1080/10426914.2017.1317786.
  • Wangikar, S. S.; Patowari, P. K.; Misra, R. D.; Misal, N. D. Photochemical Machining: A Less Explored Non-conventional Machining Process. In Non-Conventional Machining in Modern Manufacturing Systems; Kumar, K., Kumari, N., Paulo Davim, J., Eds.; IGI Global: USA, 2019; pp 188–201. DOI: 10.4018/978-1-5225-6161-3.ch009.
  • Wangikar, S. S.; Patowari, P. K.; Misra, R. D. Parametric Optimization for Photochemical Machining of Copper Using Overall Evaluation Criteria. Mater. Today Proc. 2018, 5(2), 4736–4742. DOI: 10.1016/j.matpr.2017.12.046.
  • Sadeghpour-Motlagh, M.; Mokhtari-Zonouzi, K.; Aghajani, H.; Kakroudi, M. G. Effects of Etching Time and NaOH Concentration on the Production of Alumina Nanowires Using Porous Anodic Alumina Template. J. Mater. Eng. Perform. 2014, 23, 2007–2014. DOI: 10.1007/s11665-014-1011-y.
  • Roy, R. K. Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement; John Wiley and Sons, Inc: New York, USA, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.