606
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Multi-variable optimization in die-sinking EDM process of AISI420 stainless steel

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 572-582 | Received 16 Jul 2020, Accepted 06 Oct 2020, Published online: 12 Nov 2020

References

  • Jain, V. K. Advanced Machining Processes; Allied Publishers: Delhi, 2002.
  • Ho, K. H.; Newman, S. T. State of the Art Electrical Discharge Machining. Int. J. Mach. Tools Manuf. 2003, 43, 1287–1300. DOI: 10.1016/S0890-6955(03)00162-7.
  • Muthuramalingam, T.; Mohan, B. Influence of Discharge Current Pulse on Machinability in Electrical Discharge Machining. Mater. Manuf. Process. 2013, 28(4), 375–380. DOI: 10.1080/10426914.2012.746700.
  • Groover, M. P. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, 4th ed.; Wiley: Danvers, 2010.
  • Lin, J. L.; Lin, C. L. The Use of the Orthogonal Array with Grey Relational Analysis to Optimize the Electrical Discharge Machining Process with Multiple Performance Characteristics. Int. J. Mach. Tools Manuf. 2002, 42, 237–244. DOI: 10.1016/S0890-6955(01)00107-9.
  • Dhakar, K.; Chaudhary, K.; Dvivedi, A.; Bembalge, O. An Environment-Friendly and Sustainable Machining Method: Near-Dry EDM. Mater. Manuf. Process. 2019, 34(12), 1307–1315. DOI: 10.1080/10426914.2019.1643471.
  • Chiang, K.; Chang, F. Optimization of the WEDM Process of Particle Reinforced Material with Multiple Performance Characteristics Using Grey Relational Grade. J. Mater. Process. Technol. 2006, 180 (1–3), 96–101. DOI:10.1016/j.jmatprotec.2006.05.008.
  • Ramakrishnan, R.; Karunamoorthy, L. Modeling and Multi-response Optimization of Inconel 718 on Machining of CNC WEDM Process. J. Mater. Process. Technol. 2008, 207(1–3), 343–349. DOI: 10.1016/j.jmatprotec.2008.06.040.
  • Lin, Y. C.; Wang, A. C.; Wang, D. A.; Chen, C. C. Machining Performance and Optimizing Machining Parameters of Al2O3–TiC Ceramics Using EDM Based on the Taguchi Method. Mater. Manuf. Process. 2009, 24(6), 667–674. DOI: 10.1080/10426910902769285.
  • Kumar, A.; Maheswari, S.; Sharma, S.; Beri, N. A Study of Multi-objective Parametric Optimization of Silicon Abrasive Mixed Electrical Discharge Machining of Tool Steel. Mater. Manuf. Process. 2010, 25(10), 1041–1047. DOI: 10.1080/10426910903447303.
  • Chakravorty, R.; Gauri, S. K.; Chakraborty, S. Optimization of Correlated Responses of EDM Process. Mater. Manuf. Process. 2012, 27(3), 337–347. DOI: 10.1080/10426914.2011.577875.
  • Meena, V. K.; Azad, M. S. Grey Relational Analysis of micro-EDM Machining of Ti–6Al–4V Alloy. Mater. Manuf. Process. 2012, 27(3), 973–977. DOI: 10.1080/10426914.2011.610080.
  • Rajyalakshmi, G.; Venkataramaiah, P. Multiple Process Parameter Optimization of Wire Electrical Discharge Machining on Inconel 825 Using Taguchi Grey Relational Analysis. Int. J. Adv. Manuf. Technol. 2013, 69(5–8), 1249–1262. DOI: 10.1007/s00170-013-5081-z.
  • Jangra, K. K. An Experimental Study for Multi-pass Cutting Operation in Wire Electrical Discharge Machining of WC-5.3% Co Composite. Int. J. Adv. Manuf. Technol. 2015, 76(5–8), 971–982. DOI: 10.1007/s00170-014-6218-4.
  • Radhika, N.; Chandran, G. K.; Shivaram, P.; Vijay Kumar, K. T. Multi-objective Optimization of EDM Parameters Using Grey Relational Analysis. J. Eng. Sci. Technol. 2015, 10(1), 1–11. 10.281786621.
  • Jagadish, R. A. Optimization of Process Parameters of Green Electrical Discharge Machining Using Principal Component Analysis (PCA). Int. J. Adv. Manuf. Technol. 2016, 87(5–8), 1299–1311. DOI: 10.1007/s00170-014-6372-8.
  • Goswami, A.; Kumar, J. Trim Cut Machining and Surface Integrity Analysis of Nimonic 80A Alloy Using Wire Cut EDM. Eng. Sci. Technol. 2017, 20 (1), 175–186. DOI:10.1016/j.jestch.2016.09.016.
  • Guo, Y.; Li., W.; Zhang, G.; Hou, P. Multi-Response Optimization of the Electrical Discharge Machining of Insulating Zirconia. Mater. Manuf. Process. 2017, 32(3), 294–301. DOI: 10.1080/10426914.2016.1176180.
  • Gopal, P. M.; Prakash, K. S.; Jayaraj, S. WEDM of mg/CRT/BN Composites: Effect of Materials and Machining Parameters. Mater. Manuf. Process. 2018, 33(1), 77–84. DOI: 10.1080/10426914.2017.1279316.
  • Sharma, P.; Chakradhar, D. S. N. Analysis and Optimization of WEDM Performance Characteristics of Inconel 706 for Aerospace Application. Silicon. 2018, 10(3), 921–930. DOI: 10.1007/s12633-017-9549-6.
  • Manikandan, N.; Balasubramanian, K.; Palanisamy, D.; Gopal, P. M.; Arulkirubakaran, D.; Binoj., J. S. Machinability Analysis and ANFIS Modelling on Advanced Machining of Hybrid Metal Matrix Composites for Aerospace Applications. Mater. Manuf. Process. 2019, 34(16), 1866–1881. DOI: 10.1080/10426914.2019.1689264.
  • Kavimani, V.; Soorya, Prakash, K.; Thankachan, T.; Nagaraja, S.; Jeevanantham, A. K.; Jhon, J. P. WEDM Parameter Optimization for Silicon@r-GO/Magnesium Composite Using Taguchi Based GRA Coupled PCA. Silicon. 2020, 12(5), 1161–1175. DOI: 10.1007/s12633-019-00205-6.
  • Hourmand, M.; Farahany, S.; Sarhan, A. A. D.; Noordin, M. Y. Investigating the Electrical Discharge Machining (EDM) Parameter Effects on Al–Mg2Si Metal Matrix Composite (MMC) for High Material Removal Rate (MRR) and Less EWR–RSM Approach. Int. J. Adv. Manuf. Technol. 2015, 77(5–8), 831–838. DOI: 10.1007/s00170-014-6491-2.
  • Chaudhari, R.; Vora, J.; Parikh, D. M.; Wankhede, V.; Khanna, S. Multi-response Optimization of WEDM Parameters Using an Integrated Approach of RSM–GRA Analysis for Pure Titanium. J. Inst. Eng. India Ser. D. 2020, 101 (1), 117–126. DOI:10.1007/s40033-020-00204-7.
  • Hanif, M.; Ahmad, W.; Hussain, S.; Jahanzaib, M.; Shah, A. Investigating the Effects of Electric Discharge Machining Parameters on Material Removal Rate and Surface Roughness on AISI D2 Steel Using RSM-GRA Integrated Approach. Int. J. Adv. Manuf. Technol. 2019, 101, 1255–1265. DOI: 10.1007/s00170-018-3019-1.
  • Mandaloi, G.; Singh, S.; Kumar, P.; Pal, K. Effect on Crystalline Structure of AISI M2 Steel Using Tungsten–thorium Electrode through MRR, EWR, and Surface Finish. Measurement. 2016, 90, 74–84. DOI: 10.1016/j.measurement.2016.04.041.
  • Pantula, P. D.; Miriyala, S. S.; Mitra, K. KERNEL: Enabler to Build Smart Surrogates for Online Optimization and Knowledge Discovery. Mater. Manuf. Process. 2017, 32(10), 1162–1171. DOI: 10.1080/10426914.2016.1269918.
  • Miriyala, S. S.; Mitra, K. Multi-objective Optimization of Iron Ore Induration Process Using Optimal Neural Networks. Mater. Manuf. Process. 2020, 35(5), 537–544. DOI: 10.1080/10426914.2019.1643476.
  • Miriyala, S. S.; Subramanian, V. R.; Mitra, K. TRANSFORM-ANN for Online Optimization of Complex Industrial Processes: Casting Process as Case Study. Eur. J. Operat. Res. 2018, 264 (1), 264–309. DOI:10.1016/j.ejor.2017.05.026.
  • Miriyala, S. S.; Mittal, P.; Majumdar, S.; Mitra, K. Comparative Study of Surrogate Approaches while Optimizing Computationally Expensive Reaction Networks. Chem. Eng. Sci. 2016, 140, 44–61. DOI: 10.1016/j.ces.2015.09.030.
  • Lin, Y. C.; Cheng, C. H.; Su, B. L.; Hwang, L. R. Machining Characteristics and Optimization of Machining Parameters of SKH 57 High-speed Steel Using Electrical-discharge Machining Based on Taguchi Method. Mater. Manuf. Process. 2006, 21(8), 922–929. DOI: 10.1080/03602550600728133.
  • Ross, P. J. Taguchi Techniques for Quality Engineering, 2nd ed.; McGraw-Hill: New York, 1996.
  • Lin, Z. C.; Ho, C. Y. Analysis and Application of Grey Relation and ANOVA in Chemical–mechanical Polishing Process Parameters. Int. J. Adv. Manuf. Technol. 2003, 21(1), 10–14. DOI: 10.1007/s001700300001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.