183
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Investigation of hybrid copper surface composite synthesized via FSP

, &
Pages 1377-1383 | Received 05 Oct 2020, Accepted 01 Apr 2021, Published online: 26 Apr 2021

References

  • Prakash, K. S.; Thankachan, T.; Radhakrishnan, R.; Parametric Optimization of Dry Sliding Wear Loss of Copper–MWCNT Composites. Trans. Nonferrous. Met. Soc. China. 2017, 273, 627–637. DOI:10.1016/s1003-6326(17)60070-0.
  • Leal, R. M.; Galvão, I.; Loureiro, A.; Rodrigues, D. M. Effect of Friction Stir Processing Parameters on the Microstructural and Electrical Properties of Copper. Int. J. Adv. Manuf. Technol. 2015, 80(9–12), 1655–1663. DOI: 10.1007/s00170-015-7141-z.
  • El-hadek, M.; Kaytbay, S. Characterization of Copper Carbon Composites Manufactured Using the Electroless Precipitation Process. Mater. Manuf. Process. 2013, 28(9), 1003–1008. DOI: 10.1080/10426914.2012.736662.
  • Jafari, J.; Givi, M. K. B.; Barmouz, M. Mechanical and Microstructural Characterization of Cu/CNT Nanocomposite Layers Fabricated via Friction Stir Processing. Int. J. Adv. Manuf. Technol. 2015, 78(1–4), 199–209. DOI: 10.1007/s00170-014-6663-0.
  • Mishra, R. S.; Mahoney, M. W.; McFadden, S. X.; Mara, N. A.; Mukherjee, A. K. High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy. Scr. Mater. 1999, 42(2), 163–168. DOI: 10.1016/S1359-6462(99)00329-2.
  • Mishra, R. S.; Mz, Z. Y. Friction Stir Welding and Processing. Mater. Sci. Eng. R. Rep. 2005, 50, 1–78. DOI: 10.1016/j.mser.2005.07.001.
  • Parikh, V. K.; Badgujar, A. D.; Ghetiya, N. D. Joining of Metal Matrix Composites Using Friction Stir Welding: A Review. Mater. Manuf. Process. 2019, 34(2), 123–146. DOI: 10.1080/10426914.2018.1532094.
  • Paulo, R. M. F.; Rubino, F.; Valente, R. A. F.; Teixeira-Dias, F.; Carlone, P. Modelling of Friction Stir Welding and Its Influence on the Structural Behaviour of Aluminium Stiffened Panels. Thin. Wall. Struct. 2020, 157, 107128. DOI: 10.1016/j.tws.2020.107128.
  • Mahmoud, E. R. I.; Takahashi, M.; Shibayanagi, T.; Ikeuchi, K. Effect of Friction Stir Processing Tool Probe on Fabrication of SiC Particle Reinforced Composite on Aluminium Surface. Sci. Technol. Weld. Join. 2009, 14(5), 413–425. DOI: 10.1179/136217109X406974.
  • Moaref, A.; Rabiezadeh, A.; Microstructural Evaluation and Tribological Properties of Underwater Friction Stir Processed CP-Copper and Its Alloy. Trans. Nonferrous. Met. Soc. China. 2020, 30, 972–981. DOI:10.1016/S1003-6326(20)65269-4.
  • Liu, D.; Shen, M.; Tang, Y.; Hu, Y.; Zhao, L.; Evaluation of Corrosion Resistance of Multipass Friction Stir Processed AZ31 Magnesium Alloy. Mater. Corros. 2019, 70, 1553–1560. DOI:10.1002/maco.201910834.
  • Arora, H. S.; Ayyagari, A.; Saini, J.; Selvam, K.; Riyadh, S.; Pole, M.; Grewal, H. S.; Mukherjee, S. High Tensile Ductility and Strength in Dual-Phase Bimodal Steel through Stationary Friction Stir Processing. Sci. Rep. 2019, 9(1), 1–6. DOI: 10.1038/s41598-019-38707-3.
  • Dutt, A. K.; Gwalani, B.; Tungala, V.; Carl, M.; Mishra, R. S.; Tamirisakandala, S. A.; Young, M. L.; Cho, K. C.; Brennan, R. E. A Novel Nano-Particle Strengthened Titanium Alloy with Exceptional Specific Strength. Sci. Rep. 2019, 9(1), 1–9. DOI: 10.1038/s41598-019-48139-8.
  • Patel, V.; Li, W.; Vairis, A.; Badheka, V. Recent Development in Friction Stir Processing as a Solid-State Grain Refinement Technique: Microstructural Evolution and Property Enhancement. Crit. Rev. Solid State Mater. Sci. 2019, 44(5), 378–426. DOI: 10.1080/10408436.2018.1490251.
  • Barmouz, M.; Asadi, P.; Besharati Givi, M. K.; Taherishargh, M. Investigation of Mechanical Properties of Cu/SiC Composite Fabricated by FSP: Effect of SiC Particles’ Size and Volume Fraction. Mater. Sci. Eng. A. 2011, 528(3), 1740–1749. DOI: 10.1016/j.msea.2010.11.006.
  • Cartigueyen, S.; Mahadevan, K. Effects of Thermal Conditions on Microstructure and Mechanical Properties of Cu–SiCp Surface Nanocomposites by Friction Stir Processing Route. Trans. Indian Inst. Met. 2019, 72(2), 289–305. DOI: 10.1007/s12666-018-1480-z.
  • Vignesh Kumar, M.; Padmanaban, G.; Balasubramanian, V.; Role of Tool Pin Profiles on Wear Characteristics of Friction Stir Processed Magnesium Alloy ZK60/Silicon Carbide Surface Composites. Materwiss. Werksttech. 2020, 512, 140–152. DOI:10.1002/mawe.201900007.
  • Cartigueyen, S.; Mahadevan, K. Wear Characteristics of Copper-Based Surface-Level Microcomposites and Nanocomposites Prepared by Friction Stir Processing. Friction. 2016, 4(1), 39–49. DOI: 10.1007/s40544-016-0102-1.
  • Rana, H.; Badheka, V. Elucidation of the Role of Rotation Speed and Stirring Direction on AA 7075-B 4 C Surface Composites Formulated by Friction Stir Processing. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233(5), 977–994. DOI: 10.1177/1464420717736548.
  • Sharma, D. K.; Patel, V.; Badheka, V.; Mehta, K.; Upadhyay, G. Fabrication of Hybrid Surface Composites AA6061/(B4C + MoS2) via Friction Stir Processing. J. Tribol. 2019, 141(5). DOI: 10.1115/1.4043067.
  • Khosravi, J.; Givi, M. K. B.; Barmouz, M.; Rahi, A. Microstructural, Mechanical, and Thermophysical Characterization of Cu/WC Composite Layers Fabricated via Friction Stir Processing. Int. J. Adv. Manuf. Technol. 2014, 74(5–8), 1087–1096. DOI: 10.1007/s00170-014-6050-x.
  • Singla, S.; Kang, A. S.; Sidhu, T. S.; Development and Characterization of WE43/Nano-TiC Surface Composite by Friction Stir Processing Technique. Meas. Control. 2020, 533–4, 730–741. DOI:10.1177/0020294019895302.
  • Xie, Z.; Luo, P.; Dong, S. J.; Tan, F. Improved Properties of TiC Coating Deposited on Copper Alloy via Friction Stir Processing. Mater. Trans. 2014, 55(11), 1639–1642. DOI: 10.2320/matertrans.M2014203.
  • Parumandla, N.; Adepu, K. Effect of Tool Shoulder Geometry on Fabrication of Al/Al2O3 Surface Nano Composite by Friction Stir Processing. Part. Sci. Technol. 2020, 38(1), 121–130. DOI: 10.1080/02726351.2018.1490361.
  • Ostovan, F.; Amanollah, S.; Toozandehjani, M.; Shafiei, E. Fabrication of Al5083 Surface Hybrid Nanocomposite Reinforced by CNTs and Al 2 O 3 Nanoparticles Using Friction Stir Processing. J. Compos. Mater. 2020, 54(8), 1107–1117. DOI: 10.1177/0021998319874849.
  • Rao, C. M.; Rao, K. M. Fabrication and Characterization of Friction Stir Processed Al 6061 Reinforced with TiB2-Al2O3. 2020, Int. J. Struct. Integr. DOI: 10.1108/IJSI-03-2020-0026.
  • Thankachan, T.; Prakash, K. S. Microstructural, Mechanical and Tribological Behavior of Aluminum Nitride Reinforced Copper Surface Composites Fabricated through Friction Stir Processing Route. Mater. Sci. Eng. A. 2017, 688(February), 301–308. DOI: 10.1016/j.msea.2017.02.010.
  • Bajakke, P. A.; Malik, V. R.; Deshpande, A. S. Particulate Metal Matrix Composites and Their Fabrication via Friction Stir Processing–a Review. Mater. Manuf. Process. 2019, 34(8), 833–881. DOI: 10.1080/10426914.2019.1605181.
  • Thankachan, T.; Soorya Prakash, K.; Loganathan, M. WEDM Process Parameter Optimization of FSPed Copper-BN Composites. Mater. Manuf. Process. 2018, 33(3), 350–358. DOI: 10.1080/10426914.2017.1339311.
  • Thankachan, T.; Prakash, K. S.; Kavimani, V. Investigations on the Effect of Friction Stir Processing on Cu-BN Surface Composites. Mater. Manuf. Process. 2017, 691. DOI: 10.1080/10426914.2017.1291952.
  • Hussain, G.; Hashemi, R.; Hashemi, H.; Al-Ghamdi, K. A. An Experimental Study on Multi-Pass Friction Stir Processing of Al/TiN Composite: Some Microstructural, Mechanical, and Wear Characteristics. Int. J. Adv. Manuf. Technol. 2016, 84(1–4), 533–546. DOI: 10.1007/s00170-015-7504-5.
  • Thankachan, T.; Prakash, K. S.; Kavimani, V. Effect of Friction Stir Processing and Hybrid Reinforcements on Copper. Mater. Manuf. Process. 2018, 33(15), 1681–1692. DOI: 10.1080/10426914.2018.1453149.
  • Thankachan, T.; Prakash, K. S.; Kavimani, V. Investigating the Effects of Hybrid Reinforcement Particles on the Microstructural, Mechanical and Tribological Properties of Friction Stir Processed Copper Surface Composites. Compos. Part B Eng. 2019, 174, 107057. DOI: 10.1016/j.compositesb.2019.107057.
  • Priyadharshini, G. S.; Subramanian, R.; Murugan, N.; Sathiskumar, R. Influence of Friction Stir Processing Parameters on Surface Modified 90Cu-10Ni Composites. Mater. Manuf. Process. 2017, 32(12), 1416–1427. DOI: 10.1080/10426914.2017.1339318.
  • Rubino, F.; Scherillo, F.; Franchitti, S.; Squillace, A.; Astarita, A.; Carlone, P. Microstructure and Surface Analysis of Friction Stir Processed Ti-6Al-4V Plates Manufactured by Electron Beam Melting. J. Manuf. Process. 2019, 37, 392–401. DOI: 10.1016/j.jmapro.2018.12.015.
  • Huang, G.; Wu, J.; Hou, W.; Shen, Y.; Gao, J. Producing of Al–WC Surface Composite by Additive Friction Stir Processing. Mater. Manuf. Process. 2019, 34(2), 147–158. DOI: 10.1080/10426914.2018.1532590.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.