325
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Internal magnetorheological finishing of a typical outer race of ball bearing

& ORCID Icon
Pages 1209-1225 | Received 27 Dec 2020, Accepted 21 Dec 2021, Published online: 10 Feb 2022

References

  • Xu, C.; Wu, T.; Huo, Y.; In-Situ, Y. H. Characterization of Three Dimensional Worn Surface under Sliding- Rolling Contact. Wear. 2019, 426–427, 1781–1787. DOI: 10.1016/j.wear.2018.12.045.
  • Wang, Z.; Ma, H.; Chen, H.; Yan, B.; Chu, X. Performance Degradation Assessment of Rolling Bearing Based on Convolutional Neural Network and Deep Long-Short Term Memory Network. Int. J. Prod. Res. 2020, 58(13), 3931–3943. DOI: 10.1080/00207543.2019.1636325.
  • Cui, L.; Zhang, Y.; Zhang, F.; Zhang, J.; Lee, S. Vibration Response Mechanism of Faulty Outer-race Rolling Element Bearings for Quantitative Analysis. J. Sound Vib 2016, 364, 67–76. DOI: 10.1016/j.jsv.2015.10.015.
  • Zheng, X.; Zhang, Y.; Du, S. The State-of-Art of Microstructural Evolution of Bearing Materials under Rolling Contact Fatigue. Mater. Sci. Technol. 2019, 36(2), 131–149. DOI: 10.1080/02670836.2019.1679524.
  • Kumar, R.; Singh, M. Outer-race Defect Width Measurement in Taper Roller Bearing Using Discrete Wavelet Transform of Vibration Signal. Measurement. 2013, 46(1), 537–545. DOI: 10.1016/j.measurement.2012.08.012.
  • Wang, Z.; Liu, Q.; Chen, H.; Chu, X. A Deformable CNN-DLSTM Based Transfer Learning Method for Fault Diagnosis of Rolling Bearing under Multiple Working Conditions. Int. J. Prod. Res. 2020, 1–15. DOI: 10.1080/00207543.2020.1808261.
  • Adabi, J.; Zare, F.; Ledwich, G.; Ghosh, A.; Lorenz, R. D. 2008. Bearing Damage Analysis by Calculation of Capacitive Coupling between Inner and Outer-races of a Ball Bearing. 13th International Power Electronics and Motion Control Conference, Poznan, 2008, 903–907, doi: 10.1109/EPEPEMC.2008.4635382.
  • Prakash, G.; Bayesian, A. Approach to Degradation Modeling and Reliability Assessment of Rolling Element Bearing. Commun. Stat. - Theory Methods. 2020, 1–22. DOI: 10.1080/03610926.2020.1734826.
  • Tandon, N.; Choudhury, A. A Theoretical Model to Predict the Vibration Response of Rolling Bearings in A Rotor Bearing System to Distributed Defects under Radial Load. J. Tribol. 2000, 122(3), 609–615. DOI: 10.1115/1.555409.
  • Goepfert, O.; Ampuero, J.; Pahud, P.; Boving, H. J. Surface Roughness Evolution of Ball Bearing Components. Tribol. Trans. 2000, 43(2), 275–280. DOI: 10.1080/10402000008982340.
  • Guo, Y. B. G. C. R.; Liu,; Liu, C. R. Mechanical Properties of Hardened AISI 52100 Steel in Hard Machining Processes. J. Manuf. Sci. Eng. 2002, 124, 1–9. DOI: 10.1115/1.1413775.
  • Chen, S.; Chen, X.; Li, Q.; Gu, J. Experimental Study on Cage Dynamic Characteristics of Angular Contact Ball Bearing in Acceleration and Deceleration Process. Tribol. Trans. 2020, 1–12. DOI: 10.1080/10402004.2020.1790706.
  • Kanazawa, Y.; De Laurentis, N.; Kadiric, A. Studies of Friction in Grease-Lubricated Rolling Bearings Using Ball-on-Disc and Full Bearing Tests. Tribol. Trans. 2020, 63(1), 77–89. DOI: 10.1080/10402004.2019.1662147.
  • Catalog Cylindrical Roller Bearings https://www.nachi-fujikoshi.co.jp/eng/jik/radial_k/0202c.htm.
  • Aggarwal, A.; Singh, A. K. Development of Grinding Wheel Type Magnetorheological Finishing Process for Blind-Hole Surfaces. Mater. Manuf. Process. 2020, 1–22. DOI: 10.1080/10426914.2020.1843666 Development.
  • Arora, K.; Singh, A. K. Magnetorheological Finishing of UHMWPE Acetabular Cup Surface and Its Performance Analysis. Mater. Manuf. Process. 2020, 35(14), 1631–1649. DOI: 10.1080/10426914.2020.1784928.
  • Bedi, T. S.; Singh, A. K. Development of Magnetorheological Fluid-Based Process for Finishing of Ferromagnetic Cylindrical Workpiece. Mach. Sci. Technol. 2018, 22(1), 120–146. DOI: 10.1080/10910344.2017.1336631.
  • Paswan, S. K.; Singh, A. K. Theoretical and Experimental Investigations on Nano-Finishing of Internal Cylindrical Surfaces with a Newly Developed Rotational Magnetorheological Honing (R-MRH) Process. Proc. IMechE. Part C J. Mech. Eng. Sci 2019, 234(2), 363–383. DOI: 10.1177/0954406219875773.
  • Paswan, S. K.; Singh, A. K. Analysis of Surface Finishing Mechanism in a Newly Developed Rotational Magnetorheological Honing Process for Its Productivity Improvement. Wear. 2019, 426–427, 68–82. DOI: 10.1016/j.wear.2019.01.001.
  • Paswan, S. K.; Singh, A. K. Investigation of Optimized Parameters for Magnetorheological Finishing the Internal Surface of the Cast-Iron Cylindrical Molds. Arab. J. Sci. Eng. 2020. DOI: 10.1007/s13369-020-05018-z.
  • Hodaei, M.; Rabbani, V.; Milani, A. S. An Enhanced Conformal Contact Modeling of the Cylindrical Roller Bearings with Inclusion of Roughness Effect. J. Adhes. Sci. Technol. 2020, 34(4), 369–387. DOI: 10.1080/01694243.2019.1670565.
  • Yadav, R. D.; Singh, A. K.; Arora, K. Parametric Analysis of Magnetorheological Finishing Process for Improved Performance of Gear Profile. J. Manuf. Process. 2020, 57, 254–267. DOI: 10.1016/j.jmapro.2020.06.024.
  • Trojahn, W.; Valentin, P. Bearing Steel Quality and Bearing Performance. Mater. Sci. Technol. 2012, 28(1), 55–57. DOI: 10.1179/1743284711Y.0000000047.
  • Sankar, M. R.; Jain, V. K.; Ramkumar, J. Nano-Finishing of Cylindrical Hard Steel Tubes Using Rotational Abrasive Flow Finishing (R-AFF) Process. Int. J. Adv. Manuf. Technol. 2016, 85(9–12), 2179–2187. DOI: 10.1007/s00170-015-8189-5.
  • Bedi, T. S.; Singh, A. K. A New Magnetorheological Finishing Process for Ferromagnetic Cylindrical Honed Surfaces. Mater. Manuf. Process. 2018, 33(11), 1141–1149. DOI: 10.1080/10426914.2016.1269925.
  • Soundhar, A.; Zubar, H. A.; Sultan, M. T. B. H. H.; Kandasamy, J. Dataset on Optimization of EDM Machining Parameters by Using Central Composite Design. Data Brief. 2019, 23, 103671. DOI: 10.1016/j.dib.2019.01.019.
  • Kumari, C.; Chak, S. K.; Vani, V. V. Experimental Investigations and Optimization of Machining Parameters for Magneto-Rheological Abrasive Honing Process. Mater. Manuf. Process. 2020, 35(14), 1622–1630. DOI: 10.1080/10426914.2020.1779938.
  • Singh, M.; Dhiman, S.; Singh, H.; Berndt, C. C. Optimization of Modulation-Assisted Drilling of Ti-6Al-4V Aerospace Alloy via Response Surface Method. Mater. Manuf. Process. 2020, 35(12), 1313–1329. DOI: 10.1080/10426914.2020.1772487.
  • Grover, V.; Singh, A. K. Parametric Optimization of a Newly Developed Magnetorheological Honing Process for Internal Finishing of EN-31 Cylindrical Workpieces. Eng. Res. Express. 2019, 1(2), 025036. DOI: 10.1088/2631-8695/ab551c.
  • Asadollahzadeh, M.; Tavakoli, H.; Torab-Mostaedi, M.; Hosseini, G.; Hemmati, A. Response Surface Methodology Based on Central Composite Design as a Chemometric Tool for Optimization of Dispersive-solidification Liquid–liquid Microextraction for Speciation of Inorganic Arsenic in Environmental Water Samples. Talanta. 2014, 123, 25–31. DOI: 10.1016/j.talanta.2013.11.071.
  • Khan, D. A.; Jha, S. Synthesis of Polishing Fluid and Novel Approach for Nanofinishing of Copper Using Ball-End Magnetorheological Finishing Process. Mater. Manuf. Process. 2018, 33(11), 1150–1159. DOI: 10.1080/10426914.2017.1328112.
  • Jeevanantham, S.; Sivaram, N. M.; Smart, D. R.; Nallusamy, S.; Prabu, N. M. Effect of Machining Parameters on MRR and Surface Roughness in Internal Grinding Using EN8, EN31 Steel. Int. J. Appl. Eng. Res. 2017, 12(11), 2963–2968.
  • Singh, H.; Niranjan, M. S.; Wattal, R. A Study for the Nanofinishing of an EN-31 Workpiece with Pulse DC Power Supply Using Ball-End Magnetorheological Finishing. Stroj. Vestn./J. Mech. Eng 2020, 66(7–8), 449–457. DOI: 10.5545/sv-jme.2020.6681.
  • Aggarwal, A.; Singh, A. K. Experimental Investigation for Fine Finishing of the Tapered Mould Cavity Using a Newly Developed GWMRF Process. J. Braz. Soc. Mech. Sci. Eng. 2021, 43(9), 1–28. DOI: 10.1007/s40430-021-03159-2.
  • Arab, J.; Dixit, P. Influence of Tool Electrode Feed Rate in the Electrochemical Discharge Drilling of a Glass Substrate. Mater. Manuf. Process. 2020, 35(15), 1749–1760. DOI: 10.1080/10426914.2020.1784936.
  • Tan, R.; Zhao, X.; Zhang, S.; Zou, X.; Guo, S.; Hu, Z.; Sun, T. Study on Ultra-Precision Processing of Ti-6Al-4V with Different Ultrasonic Vibration-Assisted Cutting Modes. Mater. Manuf. Process. 2019, 34(12), 1380–1388. DOI: 10.1080/10426914.2019.1660788.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.