315
Views
0
CrossRef citations to date
0
Altmetric
Articles

Experimental investigation and optimization of co-axial ring + core dual beam laser welding parameters for SUS301 stainless steel sheet

, &
Pages 554-569 | Received 01 Feb 2022, Accepted 21 Mar 2022, Published online: 22 Apr 2022

References

  • Ragavendran, M.; Vasudevan, M. Laser and Hybrid Laser Welding of Type 316L(N) Austenitic Stainless Steel Plates. Mater. Manuf. Process. 2020, 35(8), 922–934. DOI: 10.1080/10426914.2020.1745231.
  • Sudhakar, R.; Sivasubramanian, R.; Yoganandh, J. Effect of Automated MIG Welding Process Parameters on ASTM a 106 Grade B Pipe Weldments Used in High-Temperature Applications. Mater. Manuf. Process. 2018, 33(7), 749–758. DOI: 10.1080/10426914.2017.1401719.
  • Singh, V.P.; Patel, S.K.; Kuriachen, B. Mechanical and Microstructural Properties Evolutions of Various Alloys Welded Through Cooling Assisted Friction-Stir Welding: A Review. Intermetallics. 2021, 133, 1–37. DOI: 10.1016/j.intermet.2021.107122.
  • Ramkumar, K.R.; Natarajan, S. Optimization of GTAW Al 3003 Weld Using Fabricated Nanocomposite Filler Metal. Mater. Manuf. Process. 2019, 34(3), 293–302. DOI: 10.1080/10426914.2018.1532585.
  • Long, H.; Gery, D.; Carlier, A.; Maropoulos, P.G. Prediction of Welding Distortion in Butt Joint of Thin Plates. Mater. Des. 2009, 30, 4126–4135. DOI: 10.1016/j.matdes.2009.05.004.
  • Sun, J.M.; Liu, X.Z.; Tong, Y.G.; Deng, D. A Comparative Study on Welding Temperature Fields, Residual Stress Distributions and Deformations Induced by Laser Beam Welding and Co2 Gas Arc Welding. Mater. Des. 2014, 63, 519–530. DOI: 10.1016/j.matdes.2014.06.057.
  • Rout, A.; Deepak, B.B.V.L.; Biswal, B.B. Optimization of Process Variables of Laser Sensor Assisted Robotic GMAW Process for Mild Steel Material. Mater. Manuf. Process. 2020, 35(15), 1690–1700. DOI: 10.1080/10426914.2020.1784934.
  • Miriyala, S. S.; Mitra, K. Multi-Objective Optimization of Iron Ore Induration Process Using Optimal Neural Networks. Mater. Manuf. Process. 2020, 35(5), 537–544. DOI: 10.1080/10426914.2019.1643476.
  • Bandhu, D.; Kumari, S.; Prajapati, V.; Saxena, K.K.; Abhishek, K. Experimental Investigation and Optimization of RMDTM Welding Parameters for ASTM A387 Grade 11 Steel. Mater. Manuf. Process. 2020, 36(13), 1524–1534. DOI: 10.1080/10426914.2020.1854472.
  • Sathiya, P.; Jaleel, M.Y.A.; Katherasan, D.; Shanmugarajan, B. Optimization of Laser Butt Welding Parameters with Multiple Performance Characteristics. Opt. Laser Technol. 2011, 43(3), 660–673. DOI: 10.1016/j.optlastec.2010.09.007.
  • Tchoumi, T.; Peyraut, F.; Bolot, R. Influence of the Welding Speed on the Distortion of Thin Stainless Steel Plates-Numerical and Experimental Investigations in the Framework of the Food Industry Machines. J. Mater. Process. Technol. 2016, 229, 216–229. DOI: 10.1016/j.jmatprotec.2015.07.021.
  • Chatterjee, S.; Mahapatra, S.S.; Bharadwaj, V.; Upadhyay, B.N.; Bindra, K.S.; Thomas, J. Parametric Appraisal of Mechanical and Metallurgical Behavior of Butt Welded Joints Using Pulsed Nd:Yag Laser on Thin Sheets of AISI 316. Opt. Laser Technol. 2019, 117, 186–199. DOI: 10.1016/j.optlastec.2019.04.004.
  • Prabakaran, M.P.; Kannan, G.R. Optimization of Laser Welding Process Parameters in Dissimilar Joint of Stainless Steel AISI316/AISI1018 Low Carbon Steel to Attain the Maximum Level of Mechanical Properties Through PWHT. Opt. Laser Technol. 2019, 112, 314–322. DOI: 10.1016/j.optlastec.2018.11.035.
  • Zhao, Y.Y.; Zhang, Y.S.; Hu, W.; Lai, X.M. Optimization of Laser Welding Thin-Gage Galvanized Steel via Response Surface Methodology. Opt. Lasers Eng. 2012, 50(9), 1267–1273. DOI: 10.1016/j.optlaseng.2012.03.010.
  • Saha, P.; Waghmare, D. Parametric Optimization for Autogenous Butt Laser Welding of Sub-Millimeter Thick SS 316 Sheets Using Central Composite Design. Opt. Laser Technol. 2020, 122, 1–12. DOI: 10.1016/j.optlastec.2019.105833.
  • Nagaraju, S.; Vasantharaja, P.; Chandrasekhar, N.; Vasudevan, M.; Jayakumar, T. Optimization of Welding Process Parameters for 9cr-1mo Steel Using RSM and GA. Mater. Manuf. Process. 2016, 31(3), 319–327. DOI: 10.1080/10426914.2015.1025974.
  • Pan, M. Minimization of Welding Distortion and Buckling; Woodhead Publishing Limited, 2011.
  • Singh, V.P.; Patel, S.K.; Kumar, N.; Kuriachen, B. Parametric Effect on Dissimilar Friction Stir Welded Steel-Magnesium Alloys Joints: A Review. Sci. Technol. Weld Joi. 2019, 24(8), 653–684. DOI: 10.1080/13621718.2019.1567031.
  • Montgomery, D.C. Design and Analysis of Experiments, 2nd ed.; Wiley: New York, 1984.
  • Box, G.E.P.; Wilson, K.B. On the Experimental Attainment of Optimum Conditions. J. R. Stat. Soc. B: Methodol. 1951, 13, 1–45. DOI: 10.1007/978-1-4612-4380-9_23.
  • Liu, H.X.; Wang, K.; Li, P.; Zhang, C. Modeling and Prediction of Transmission Laser Bonding Process Between Titanium Coated Glass and PET Based on Response Surface Methodology. Opt. Lasers Eng. 2012, 50(3), 440–4488. DOI: 10.1016/j.optlaseng.2011.10.010.
  • Ma, J.J.; Kong, F.R.; Carlson, B.; Kovacevic, R. Two-Pass Laser Welding of Galvanized High-Strength Dual-Phase Steel for a Zero-Gap Lap Joint Configuration. J. Mater. Process. Technol. 2013, 213(3), 495–507. DOI: 10.1016/j.jmatprotec.2012.10.019.
  • Tolle, F.; Gumenyuk, A.; Backhaus, A.; Olschok, S.; Rethmeier, M.; Reisgen, U. Welding Residual Stress Reduction by Scanning of a Defocused Beam. J. Mater. Process. Tech. 2012, 212(1), 19–26. DOI: 10.1016/j.matprotec.2011.07.019.
  • Zhang, X.G.; Li, L.Q.; Chen, Y.B.; Zhu, X.C.; Ji, S.J. Numerical Simulation Analysis of Dual-Beam Laser Welding of Tailored Blanks with Different Thicknesses. Metals. 2019, 9(2), 1–15. DOI: 10.3390/met9020135.
  • Ragavendran, M.; Chandrasekhar, N.; Ravikumar, R.; Saxena, R.; Vasudevan, M.; Bhaduri, A.K. Optimization of Hybrid Laser – TIG Welding of 316LN Steel Using Response Surface Methodology (RSM). Opt. Lasers Eng. 2017, 94, 27–36. DOI: 10.1016/j.optlaseng.2017.02.015.
  • Spina, R.; Tricarico, L.; Basile, G.; Sibillano, T. Thermo-Mechanical Modeling of Laser Welding of AA5083 Sheets. J. Mater. Process. Technol. 2007, 191(1–3), 215–219. DOI: 10.1016/j.jmatprotec.2007.03.087.
  • Han, Q.; Kim, D.; Kim, D.; Lee, H.; Kim, N. Laser Pulsed Welding in Thin Sheets of Zircaloy-4. J. Mater. Process. Tech. 2012, 212(5), 1116–1122. DOI: 10.1016/j.jmatprotec.2011.12.022.
  • Chatterjee, S.; Mahapatra, S.S.; Abhishek, K. Simulation and Optimization of Machining Parameters in Drilling of Titanium Alloys. Simul. Model. Pract. Theory. 2016, 62, 31–48. DOI: 10.1016/j.simpat.2015.12.004.
  • Zhao, S.S.; Yu, G.; He, X.L.; Zhang, Y.J.; Ning, W.J. Numerical Simulation and Experimental Investigation of Laser Overlap Welding of Ti6al4v and 42crmo. J. Mater. Process. Tech. 2011, 211(3), 530–537. DOI: 10.1016/j.jmatprotec.2010.11.007.
  • Baruah, M.; Bag, S. Influence of Heat Input in Microwelding of Titanium Alloy by Micro Plasma Arc. J. Mater. Process. Tech. 2016, 231, 100–112. DOI: 10.1016/j.jmatprotec.2015.12.014.
  • Wang, L.; Gao, M.; Zhang, C.; Zeng, X.Y. Effect of Beam Oscillating Pattern on Weld Characterization of Laser Welding of AA6061-T6 Aluminum Alloy. Mater. Des. 2016, 108, 707–717. DOI: 10.1016/j.matdes.2016.07.053.
  • Chen, Q.H.; Ge, H.L.; Yang, C.L.; Lin, S.B.; Fan, C.L. Study on Pores in Ultrasonic-Assisted TIG Weld of Aluminum Alloy. Metals. 2017, 7(2), 1–10. DOI: 10.3390/met7020053.
  • Anawa, E.M.; Olabi, A.G. Control of Welding Residual Stress for Dissimilar Laser Welded Materials. J. Mater. Process. Tech. 2008, 204(1–3), 22–33. DOI: 10.1016/j.jmatprotec.2008.03.047.
  • Zhan, X.H.; Liu, J.T.; Chen, J.C.; Peng, Q.Y.; Wei, Y.H.; Zhao, Y.Q. Parameter Optimization of Multi-Pass Multi-Layer MIG Welded Joint for Invar Alloy. Int. J. Adv. Manuf. Technol. 2016, 87(1–4), 601–613. DOI: 10.1007/s00170-016-8544-1.
  • Qian, M.; Cao, P.; Easton, M.A.; McDonald, S.D.; StJohn, D.H. An Analytical Model for Constitutional Supercooling-Driven Grain Formation and Grain Size Prediction. Acta Mater. 2010, 58(9), 3262–3270. DOI: 10.1016/j.actamat.2010.01.052.
  • Todaro, C.J.; Easton, M.A.; Qiu, D.; Brandt, M.; StJohn, D.H.; Qian, M. Grain Refinement of Stainless Steel in Ultrasound-Assisted Additive Manufacturing. Addit. Manuf. 2021, 37, 1–9. DOI: 10.1016/j.addma.2020.101632.
  • Fei, X.J.; Ye, Y.; Jin, L.L.; Wang, H.W.; Lv, S.C. Special Welding Parameters Study on Cu/al Joint in Laser-Heated Friction Stir Welding. J. Mater. Process. Tech. 2018, 256, 160–171. DOI: 10.1016/j.jmatprotec.2018.02.004.
  • Pang, X.B.; Dai, J.H.; Chen, S.; Zhang, M.J. Microstructure and Mechanical Properties of Fiber Laser Welding of Aluminum Alloy with Beam Oscillation. Appl. Sci. Basel. 2019, 9(23), 1–11. DOI: 10.3390/app9235096.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.