373
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Machinability analysis of Titanium 64 using ultrasonic vibration and vegetable oil

ORCID Icon & ORCID Icon
Pages 1893-1901 | Received 28 Feb 2022, Accepted 08 Mar 2022, Published online: 14 Apr 2022

References

  • Mahesh, K.; Philip, J. T.; Joshi, S. N.; Kuriachen, B. Machinability of Inconel 718: A Critical Review on the Impact of Cutting Temperatures. Mater. Manuf. Process. 2021, 36(7), 753–791. DOI: 10.1080/10426914.2020.1843671.
  • George, A.; Kuriachen, B.; Dhanish, P. B.; Mathew, J. Experimental Investigations into the Influence of AlSi-10mg Soft Tool Coating on the Machinability of Ti6al4v. Mater. Manuf. Process. 2021, 1–11. DOI: 10.1080/10426914.2021.1981934.
  • Arka, G. N.; Sahoo, S. K.; Iqbal, M. M.; Singh, S. Acoustic Horn Tool Assembly Design for Ultrasonic Assisted Turning and Its Effects on Performance Potential. Mater. Manuf. Process. 2021. DOI: 10.1080/10426914.2021.2016819.
  • Khanna, N.; Airao, J.; Gupta, M. K.; Song, Q.; Liu, Z.; Mia, M.; Maruda, R.; Krolczyk, G. Optimization of Power Consumption As-Sociated with Surface Roughness in Ultrasonic Assisted Turning ofNimonic-90 Using Hybrid Particle Swarm-Simplex Method. Materials. 2019, 12, 3418. DOI: 10.3390/ma12203418.
  • Airao, J.; Khanna, N.; Roy, A.; Hegab, H. Comprehensive Experimental Analysis and Sustainability Assessment of Machining Nimonic 90 Using Ultrasonic Assisted Turning Facility. Int. J. Adv. Manuf. Technol. 2020, 109, 1447–1462. DOI: 10.1007/s00170-020-05686-z.
  • Hoang, T. D.; Ngo, Q. H.; Chu, N. H.; Mai, T. H.; Nguyen, T.; Ho, K. T.; Nguyen, D. Ultrasonic Assisted Nano-Fluid MQL in Deep Drilling of Hard-To-Cut Materials. Mater. Manuf. Process. 2021. DOI: 10.1080/10426914.2021.1981936.
  • Kanta, R.; Singh, K.; Agrawal, N.; Jain, S. Green Manufacturing—Performance of a Biodegradable Cutting Fluid. Mater. Manuf. Process. 2017, 32(13), 1522–1527. DOI: 10.1080/10426914.2017.1328119.
  • Lawal, S. A.; Choudhury, I. A.; Nukman, Y. Application of Vegetable Oil-Based Metal Working Fluids in Machining Ferrous Metals—A Review. Int. J. Mach. Tools Manuf. 2012, 52, 1–12. DOI: 10.1016/j.ijmachtools.2011.09.003.
  • Gracia, U.; Riberio, M. V. Ti6al4v Titanium Alloy End Milling with Minimum Quantity of Fluid Technique Use. Mater. Manuf. Process. 2016, 31, 905–918. DOI: 10.1080/10426914.2015.1048367.
  • Park, K. H.; Suhaimi, M. A.; Yang, G. D.; Lee, D. Y.; Lee, S. W.; Kwon, P. Milling of Titanium Alloy with Cryogenic Cooling and Minimum Quantity Lubrication (MQL). Int. J. Prec. Eng. Manuf. 2017, 18(1), 5–14. DOI: 10.1007/s12541-017-0001-z.
  • Wickramasinghe, K. C.; Perera, G. I. P.; Herath, H. M. C. M. Formulation and Performance Evaluation of a Novel Coconut Oil–Based Metalworking Fluid. Mater. Manuf. Process. 2017, 32(9), 1026–1033. DOI: 10.1080/10426914.2016.1257858.
  • Sankaranarayanan, R.; Hynes, R. J.; SenthilKumar, J.; Krolczyk, G. M. A Comprehensive Review on Research Developments of Vegetable-Oil Based Cutting Fluids for Sustainable Machining Challenges. J. Manuf. Process. 2021, 67, 286–313. DOI: 10.1016/j.jmapro.2021.05.002.
  • Toshiaki, W.; Junji, K.; Toshifumi, A.; Akira, T.; Noiro, S.; Junichi, A.; Santoshi, S. Near-Dry Machining of Titanium Alloy with MQL and Hybrid Mist Supply. Key Eng. Mater. 2015, 656-657, 341–346. DOI: 10.4028/KEM.656-657.341www.scientific.net/.
  • Rahim, E. A.; Sasahara, H. Effect of MQL Liquids on Surface Integrity When High Speed Drilling of Titanium Alloy. Key Eng. Mater. 2020, 443, 359–364. DOI: 10.4028/KEM.443.359www.scientific.net/.
  • Zakaria, M. F.; Suhaimi, M. A.; Sharif, S.; Yang, G. D.; Shaharum, M. S.; Kamal, M. K. M.; Zakaria, K. The Application of Cold-Air and Nano-MQL as Cooling Strategy in High Speed Milling of Titanium Alloy Ti-6al-$v: A Review. AIP Conf. Proceed. 2019, 2129, 020175.
  • Sen, B.; Gupta, M. K.; Mia, M.; Pimenov, D. Y.; Mikołajczyk, T. Performance Assessment of Minimum Quantity Castor-Palm Oil Mixtures in Hard-Milling Operation. Mater. (Basel). 2021, 14, 198. DOI: 10.3390/ma14010198.
  • Xu, Y.; Zou, P.; He, Y.; Chen, S.; Tian, Y.; Gao, X. Comparative Experimental Research in Turning of 304 Austenitic Stainless Steel with and Without Ultrasonic Vibration. Proc. Inst. Mech. Eng. Part C. 2017, 231(15), 2885–2901. DOI: 10.1177/0954406216642262.
  • Airao, J.; Nirala, C. K.; Lacalle, L. N. L. D.; Khanna, N. Tool Wear Analysis During Ultrasonic Assisted Turning of Nimonic-90 Under Dry and Wet Conditions. Metals. 2021, 11, 1253. DOI: 10.3390/met11081253.
  • Airao, J.; Nirala, C. K. Finite Element Modeling of Ultrasonic Assisted Turning with External Heating. Proc. CIRP. 2021, 102, 61–66. DOI: 10.1016/j.procir.2021.09.011.
  • Okafor, A. C.; Nwoguh, T. O. A Study of Viscosity and Thermal Conductivity of Vegetable Oils as Base Cutting Fluids for Minimum Quantity Lubrication Machining of Difficult-To-Cut Metals. Int. J. Adv. Manuf. Technol. 2020, 106, 1121–1131. DOI: 10.1007/s00170-019-04611-3.
  • Airao, J.; Nirala, C. K. Analytical Modeling of Machining Forces and Frictional Characteristics in Ultrasonic Assisted Turning Process. ASME J. Manuf. Sci. Eng. 2021, 144, 021014. DOI: 10.1115/1.4052129.
  • Bayat, M.; Amini, S.; Hadidi, M. Effect of Ultrasonic-Assisted Turning on Geometrical Tolerances in Al 2024-T6. Mater. Manuf. Process. 2021, 36(16), 1875–1886. DOI: 10.1080/10426914.2021.1926496.
  • Hu, K.; Lo, S.-L.; Wu, H. Study on Influence of Ultrasonic Vibration on the Ultra-Precision Turning of Ti6al4v Alloy Based on Simulation and Experiment. IEEE Access. 2019, 7, 1.
  • Kanta, R.; Suhaib, M.; Agrawal, N. Nonedible Vegetable Oil-Based Cutting Fluids for Machining Processes– a Review. Mater. Manuf. Process. 2020, 35(1), 1–32. DOI: 10.1080/10426914.2019.1697446.
  • Fan, Y.; Hao, Z.; Zheng, M.; Yang, S. Wear Characteristics of Cemented Carbide Tool in Dry-Machining Ti-6al-4V, Mach. Sci. Technol. 2016, 20, 249–261.
  • Airao, J.; Nirala, C. K. Machinability of Ti-6al-4V and Nimonic-90 in Ultrasonic-Assisted Turning Under Sustainable Cutting Fluid. Mater. Today Proc. 2022. DOI: 10.1016/j.matpr.2022.02.312.
  • Ni, C.; Zhu, L.; Yang, Z. Comparative Investigation of Tool Wear Mechanism and Corresponding Machined Surface Characterization in Feed-Direction Ultrasonic Vibration Assisted Milling of Ti–6al–4v from Dynamic View. Wear. 2019, 436–437, 203006. DOI: 10.1016/j.wear.2019.203006.
  • Peksen, H.; Kaliyon, A. Optimization and Measurement of Flank Wear and Surface Roughness via Taguchi Based Grey Relational Analysis. Mater. Manuf. Process. 2021, 36(16), 1865–1874. DOI: 10.1080/10426914.2021.1926497.
  • Pramanik, A. Problems and Solutions in Machining of Titanium Alloys. Int. J. Adv. Manuf. Technol. 2014, 70, 919–928. DOI: 10.1007/s00170-013-5326-x.
  • Airao, J.; Nirala, C. K.; Bertolini, R.; Krolczyk, G. M.; Khanna, N. Sustainable Cooling Strategies to Reduce Tool Wear, Power Consumption and Surface Roughness During Ultrasonic Assisted Turning of Ti-6al-4V. Tribol. Int. 2022, 169, 107494. DOI: 10.1016/j.triboint.2022.107494.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.