162
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development and investigation of the magnetorheological abrasive finishing (MRAF) system to nano-finish exterior cylindrical surfaces

, &
Pages 1255-1266 | Received 15 Oct 2021, Accepted 21 Mar 2022, Published online: 15 May 2022

References

  • Singh, M.; Singh, A.K. Performance Investigation of Magnetorheological Finishing of Rolls Surface in Cold Rolling Process. J. Manuf. Process. 2019, 41, 315–329. DOI: 10.1016/j.jmapro.2019.04.007.
  • Sidpara, A.; Jain, V.K. Experimental Investigations into Surface Roughness and Yield Stress in Magnetorheological Fluid Based Nano-Finishing Process. Int. J. Precis. Eng. Manuf. 2012, 13(6), 855–860. DOI: 10.1007/s12541-012-0111-6.
  • Bayoumi, M.R.; Abdellatif, A.K. Effect of Surface Finish on Fatigue Strength. Eng. Fract. Mech. 1995, 51(5), 861–870. DOI: 10.1016/0013-7944(94)00297-U.
  • Gorana, V.K.; Jain, V.K.; Lal, G.K. Experimental Investigation into Cutting Forces and Active Grain Density During Abrasive Flow Machining. Int. J. Mach. Tools Manuf. 2004, 44(2–3), 201–211. DOI: 10.1016/j.ijmachtools.2003.10.004.
  • Jain, V.K. Abrasive-Based Nano-Finishing Techniques: An Overview. Mach. Sci. Technol. 2008, 12(3), 257–294. DOI: 10.1080/10910340802278133.
  • Lim, H.S.; Fathima, K.; Senthil Kumar, A., Rahman, M.; et al. A Fundamental Study on the Mechanism of Electrolytic In-Process Dressing (ELID) Grinding. Int. J. Mach. Tools Manuf. 2002, 42(8), 935–943. DOI: 10.1016/S0890-6955(02)00023-8.
  • Kumar, V.; Kumar, R.; Kumar, H. Rheological Characterization of Vegetable-Oil-Based Magnetorheological Finishing Fluid. Mater. Today Proc. 2019, 18, 3526–3531. DOI: 10.1016/j.matpr.2019.07.282.
  • Khan, D.A.; Jha, S. Selection of Optimum Polishing Fluid Composition for Ball End Magnetorheological Finishing (BEMRF) of Copper. Int. J. Adv. Manuf. Technol. 2019, 100(5–8), 1093–1103. DOI: 10.1007/s00170-017-1056-9.
  • Kordonski, W.; Shorey, A. Magnetorheological (MR) Jet Finishing Technology. J. Intell. Mater. Syst. Struct. 2007, 18(12), 1127–1130. DOI: 10.1177/1045389X07083139.
  • Jha, S.; Jain, V.K. Design and Development of the Magnetorheological Abrasive Flow Finishing (MRAFF) Process. Int. J. Mach. Tools Manuf. 2004, 44(10), 1019–1029. DOI: 10.1016/j.ijmachtools.2004.03.007.
  • Chen, M.; Liu, H.; Su, Y., Yu, B., Fang, Z.; et al. Design and Fabrication of a Novel Magnetorheological Finishing Process for Small Concave Surfaces Using Small Ball-End Permanent-Magnet Polishing Head. Int. J. Adv. Manuf. Technol. 2016, 83(5–8), 823–834. DOI: 10.1007/s00170-015-7573-5.
  • Menapace, J.A. Developing Magnetorheological Finishing (MRF) Technology for the Manufacture of Large-Aperture Optics in Megajoule Class Laser Systems. Proc SPIE Laser-Induced Damage in Opt. Mater. 2010, 7842, 78421W–14. DOI: 10.1117/12.855603.
  • Singh, A.K.; Jha, S.; Pandey, P.M. Design and Development of Nanofinishing Process for 3D Surfaces Using Ball End MR Finishing Tool. Int. J. Mach. Tools Manuf. 2011, 51(2), 142–151. DOI: 10.1016/j.ijmachtools.2010.10.002.
  • Bedi, T.S.; Singh, A.K. Development of Magnetorheological Fluid-Based Process for Finishing of Ferromagnetic Cylindrical Workpiece. Mach. Sci. Technol. 2018, 22(1), 120–146. DOI: 10.1080/10910344.2017.1336631.
  • Singh, G.; Singh, A.K.; Garg, P. Development of Magnetorheological Finishing Process for External Cylindrical Surfaces. Mater. Manuf. Process. 2017, 32(5), 581–588. DOI: 10.1080/10426914.2016.1221082.
  • Maan, S.; Singh, G.; Singh, A.K. Nano-Surface-Finishing of Permanent Mold Punch Using Magnetorheological Fluid-Based Finishing Processes. Mater. Manuf. Process. 2017, 32(9), 1004–1010. DOI: 10.1080/10426914.2016.1232823.
  • Singh, M.; Singh, A.K. Improved Magnetorheological Finishing Process with Rectangular Core Tip for External Cylindrical Surfaces. Mater. Manuf. Process. 2019, 34(9), 1049–1061. DOI: 10.1080/10426914.2019.1594272.
  • Saraeian, P.; Mehr, H.S.; Moradi, B., Tavakoli, H., Khalil Alrahmani, O.; et al. Study of Magnetic Abrasive Finishing for AISI321 Stainless Steel. Mater. Manuf. Process. 2016, 31(15), 2023–2029. DOI: 10.1080/10426914.2016.1140195.
  • Kaur, A.S.; Acherjee, B.; Ganguly, D., Mitra, S.; et al. Optimization of Nd:Yag Laser Parameters for Microdrilling of Alumina with Multiquality Characteristics via Grey–taguchi Method. Mater. Manuf. Process. 2012, 27(3), 329–336.DOI: 10.1080/10426914.2011.585493.
  • Lin, T.R. Optimization of Removal Rate and Weibull Modulus in Polishing of Ceramic Blocks Using the Fuzzy-Based Taguchi Method. Mater. Manuf. Process. 2003, 18(2), 229–243. DOI: 10.1081/AMP-120018907.
  • Pekşen, H.; Kalyon, A. Optimization and Measurement of Flank Wear and Surface Roughness via Taguchi Based Grey Relational Analysis. Mater. Manuf. Process. 2021, 36(16), 1865–1874. DOI: 10.1080/10426914.2021.1926497.
  • Inapakurthi, R.K.; Pantula, P.D.; Miriyala, S.S., Mitra, K.; et al. Data Driven Robust Optimization of Grinding Process Under Uncertainty. Mater. Manuf. Process. 2020, 35(16), 1870–1876. DOI: 10.1080/10426914.2020.1802042.
  • Sharma, S.; Pantula, P.D.; Miriyala, S.S., Mitra, K.; et al. A Novel Data-Driven Sampling Strategy for Optimizing Industrial Grinding Operation Under Uncertainty Using Chance Constrained Programming. Powder Technol. 2021, 377, 913–923. DOI: 10.1016/j.powtec.2020.09.024.
  • Miriyala, S.S.; Mitra, K. Multi-Objective Optimization of Iron Ore Induration Process Using Optimal Neural Networks. Mater. Manuf. Process. 2020, 35(5), 537–544. DOI: 10.1080/10426914.2019.1643476.
  • Mogilicharla, A.; Mittal, P.; Majumdar, S., Mitra, K.; et al. Kriging Surrogate Based Multi-Objective Optimization of Bulk Vinyl Acetate Polymerization with Branching. Mater. Manuf. Process. 2015, 30(4), 394–402. DOI: 10.1080/10426914.2014.921709.
  • Inapakurthi, R.K.; Mitra, K. Optimal Surrogate Building Using SVR for an Industrial Grinding Process. Mater. Manuf. Process. 2022 (online early access), 1–7. DOI:10.1080/10426914.2022.2039699
  • Pantula, P.D.; Miriyala, S.S.; Mitra, K. KERNEL: Enabler to Build Smart Surrogates for Online Optimization and Knowledge Discovery. Mater. Manuf. Process. 2017, 32(10), 1162–1171. DOI: 10.1080/10426914.2016.1269918.
  • Singh, M.; Singh, A.; Singh, A.K. A Rotating Core-Based Magnetorheological Nano- Finishing Process for External Cylindrical Surfaces. Mater. Manuf. Process. 2018, 33(11), 1160–1168. DOI: 10.1080/10426914.2017.1328116.
  • Kumar, V.; Kumar, R.; Kumar, H. Rheological Characterization and Performance Evaluation of Magnetorheological Finishing Fluid. J. Appl. Fluid Mech. 2020, 13(1), 185–197. DOI: 10.29252/jafm.13.01.29763.
  • Antil, P. Experimental Analysis on Wear Behavior of Pmcs Reinforced with Electroless Coated Silicon Carbide Particulates. Silicon. 2019, 11(4), 1791–1800. DOI: 10.1007/s12633-018-9995-9.
  • Chana, A.; Singh, A.K. Magnetorheological Nano-Finishing of Tube Extrusion Punch for Improving Its Functional Applications in Press Machine. Int. J. Adv. Manuf. Technol. 2019, 103(5–8), 2037–2052. DOI: 10.1007/s00170-019-03633-1.
  • Jain, V.K.; Kumar, P.; Behera, P.K.; Jayswal, S.C. Effect of Working Gap and Circumferential Speed on the Performance of Magnetic Abrasive Finishing Process. Wear. 2001, 250(1–12), 384–390. DOI: 10.1016/S0043-1648(01)00642-1.
  • Sadiq, A., and Shunmugam, M.S. Investigation into Magnetorheological Abrasive Honing (MRAH). Int. J. Mach. Tools Manuf. 2009, 49(7–8), 554–560. DOI: 10.1016/j.ijmachtools.2009.02.009.
  • Singh, M., and Singh, A.K. Magnetorheological Finishing of Grooved Drum Surface and Its Performance Analysis in Winding Process. Int. J. Adv. Manuf. Technol. 2020, 106, 2921–2937. DOI: 10.1007/s00170-019-04812-w.
  • Cetin, M.H.; Ozcelik, B.; Kuram, E., Demirbas, E.; et al. Evaluation of Vegetable Based Cutting Fluids with Extreme Pressure and Cutting Parameters in Turning of AISI 304L by Taguchi Method. J. Cleaner Prod. 2011, 19(17–18), 2049–2056. DOI: 10.1016/j.jclepro.2011.07.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.