267
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of high-strength salt cores for manufacturing hollow aluminum alloy die castings

ORCID Icon, , ORCID Icon &
Pages 188-196 | Received 03 Apr 2022, Accepted 21 Apr 2022, Published online: 13 May 2022

References

  • Mayank, A.; Rajeev, S. Influence of Processing Parameters on Microstructure and Mechanical Response of a High-Pressure Die Cast Aluminum Alloy. Mater. Manuf. Process. 2018, 34, 1–11.
  • Dong, X.; Yang, H.; Zhu, X.; Ji, S. High Strength and Ductility Aluminum Alloy Processed by High Pressure Die Casting. J. Alloy Compd. 2018, 773, 86–96.
  • Lordan, E.; Lazaro, J.; Zhang, Y.; Dou, K.; Blake, P.; Fan, Z.-Y. On the Relationship Between Internal Porosity and the Tensile Ductility of Aluminum Alloy Die-Castings. Mat. Sci. Eng. 2020, 778(19), 139101–139107.
  • Hu, Z. Injection Parameters Optimization and Artificial Aging of Automotive Die Cast Aluminum Alloy. Mater. Manuf. Process. 2016, 31(6), 787–793.
  • Luo, A. A.; Sachdev, A. K.; Powell, B. R. Advanced Casting Technologies for Lightweight Automotive Applications. China. Foundry. 2010, 7(4), 463–469.
  • Schmidt, P.; Bast, J.; Aitsuradze, M.; Arnberg, L. Hollow Castings Produced by Interrupted Low Pressure Die Casting. Int. J. Cast. Metal. Res. 2010, 23(1), 1–6.
  • Wang, D.-H.; He, B.; Li, F.; Wang, F.; Sun, B.-D. Experimental and Numerical Analysis on Core Deflection During Wax Injection. Mater. Manuf. Process. 2013, 28(11), 1209–1214.
  • Weise, J.; Hilbers, J.; Handels, F.; Lehmhus, D.; Busse, M.; Heuser, M. New Core Technology for Light Metal Casting. Adv. Eng. Mater. 2019, 21(4), 1800608.
  • Gromada, M.; Wieca, A.; Kostecki, M.; Olszyn, A.; Cyganc, R. Ceramic Cores for Turbine Blades via Injection Moulding. J. Mater. Process. Tech. 2015, 220, 107–112.
  • Khandelwal, H.; Ravi, B. Effect of Binder Composition on the Shrinkage of Chemically Bonded Sand Cores. Mater. Manuf. Process. 2015, 30(12), 1465–1470.
  • Song, G.; Du, X.; Zhang, M.; Sun, Y.; Cheng, N. Parametric Optimization of Modifiers for Ester-Hardened Sodium Silicate Bonded Sand. Mater. Manuf. Process. 2020, 35(5), 531–536.
  • Liu, F.; Fan, Z.; Liu, X.; Huang, Y.; Jiang, P. Effect of Surface Coating Strengthening on Humidity Resistance of Sodium Silicate Bonded Sand Cured by Microwave Heating. Mater. Manuf. Process. 2015, 31(12), 1639–1642.
  • Cho, G. H.; Li, J.; Kim, E. H.; Jung, Y. G. Preparation of a Ceramic Core with High Strength Using an Inorganic Precursor and the Gel-Casting Method. Surf. Coat. Technol. 2015, 284, 396–399.
  • Xiao, Z.; Harper, L. T.; Kennedy, A. R. A Water-Soluble Core Material for Manufacturing Hollow Composite Sections. Compos. Struct. 2017, 182(12), 380–390.
  • Schilling, A.; Salscheider, K.; Rusche, H.; Jasak, H.; Fehlbier, H.; Kohlstädt, S. Approach on Simulation of Solidification and Shrinkage of Gravity Cast Salt Cores. Simul. Model. Pract. Th. 2021, 107, 102231.
  • Gong, X.; Liu, X.; Chen, Z.; Yang, Z.; Jiang, W.; Fan, Z. 3D Printing of High-Strength Water-Soluble Salt Cores via Material Extrusion. Int. J. Adv. Manuf. Tech. 2022, 118(10), 2993–3003.
  • Kohlstädt, S.; Vynnycky, M.; Jäckel, J. Towards the Modelling of Fluid-Structure Interactive Lost Core Deformation in High-Pressure Die Casting. Appl. Math. Model. 2020, 80, 319–333.
  • Liu, F.; Tu, S.; Gong, X.; Li, G.; Jiang, W.; Fan, Z. Comparative Study on Performance and Microstructure of Composite Water-Soluble Salt Core Material for Manufacturing Hollow Zinc Alloy Castings. Mater. Chem. Phys. 2020, 252, 123257.
  • Gong, X.; Jiang, W.; Liu, F.; Yang, Z.; Fan, Z. Effects of Glass Fiber Size and Content on Microstructures and Properties of Kno3-Based Water-Soluble Salt Core for High Pressure Die Casting. Int. J. Metalcast. 2021, 15, 520–529.
  • Jiang, W.; Dong, J.; Lou, L.; Liu, M.; Hu, Z. Preparation and Properties of a Novel Water Soluble Core Material. J. Mater. Sci. Technol. 2010, 26(3), 270–275.
  • Yaokawa, J.; Miura, D.; Anzai, K.; Yamada, Y.; Yoshii, H. Strength of Salt Core Composed of Alkali Carbonate and Alkali Chloride Mixtures Made by Casting Technique. Mater. Trans. 2007, 48(5), 1034–1041.
  • Fuchs, B.; Eibisch, H.; Koerner, C. Core Viability Simulation for Salt Core Technology in High-Pressure Die Casting. Int. J. Metalcast. 2013, 7(3), 39–45.
  • Tu, S.; Liu, F.; Li, G.; Jiang, W.; Fan, Z. Fabrication and Characterization of High-Strength Water-Soluble Composite Salt Core for Zinc Alloy Die Castings. Int. J. Adv. Manuf. Tech. 2018, 95(4), 505–512.
  • Alem, S. A. A.; Latifi, R.; Angizi, S.; Hassanaghaei, F.; AghaahmadiHot, M.; Rajabi, M. Microwave Sintering of Ceramic Reinforced Metal Matrix Composites and Their Properties: A Review. Mater. Manuf. Process. 2020, 35(3), 303–327.
  • Chakraborti, R. K.; Kaur, J. Noninvasive Measurement of Particle-Settling Velocity and Comparison with Stokes’ Law. J. Environ. Eng. 2014, 140, 40130082.
  • Wang, L.; Zheng, K.; Ding, Z.; Yan, X.; Zhang, H.; Cao, Y.; Guo, C. Drag Coefficient and Settling Velocity of Fine Particles with Varying Surface Wettability. Powder. Technol. 2020, 372, 8–14.
  • Salt Phase Diagrams. https://www.crct.polymtl.ca/fact/phase_diagram.php?file=NaCl-Na2SO4.jpg&dir=FTsalt. (accessed July 6, 2021).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.