314
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and electrochemical performance of Mo-doped LiNi0.5Mn1.5O4 cathode material

, &
Pages 197-205 | Received 14 Sep 2021, Accepted 02 May 2022, Published online: 22 May 2022

References

  • Rahim, A. S.; Aziz, N.; Nor, N. A. M.; Osman, Z. LiNi0.5Mn1.5O4 Cathode Material Prepared by Sol–gel Method. Mater. Manuf. Process. 2020, 695(1), 10–18.
  • Jehnichen, P.; Wedlich, K.; Korte, C. Degradation of High-Voltage Cathodes for Advanced Lithium-Ion Batteries – Differential Capacity Study on Differently Balanced Cells. Mater. Manuf. Process. 2018, 20(1), 1–9.
  • Li, X. C.; Liu, L. Z.; Yang, Y.; Niu, Q. H.; Zheng, L. L.; Sun, X. L.; Wu, J. F. Mitigated Voltage Decay and Improved Electrochemical Properties of 0.5Li2Mno3∙0.5LiNixCoyMn1-X-YO2 Cathode via Composition Optimizing. Ionics. 2021, 27(7), 2889–2900. DOI: 10.1007/s11581-021-04093-y.
  • Hekmatfar, M.; Hasa, I.; Eghbal, R.; Carvalho, D. V.; Moretti, A.; Passerini, S. Effect of Electrolyte Additives on the LiNi0.5mn0.3co0.2o2 Surface Film Formation with Lithium and Graphite Negative Electrodes. Adv. Mater. Interfaces. 2019, 7(1).
  • Pang, P. P.; Wang, Z.; Deng, Y. M.; Nan, J. M.; Xing, Z. Y.; Li, H. Delayed Phase Transition and Improved Cycling/thermal Stability by Spinel LiNi0.5Mn1.5O4 Modification for LiCoo2 Cathode at High Voltages. ACS Appl. Mater. Interfaces. 2020, 12(24), 27339–27349. DOI: 10.1021/acsami.0c02459.
  • Du, B. D.; Mo, Y.; Jin, H. F.; Li, X. R.; Qu, Y. Y.; Li, D.; Cao, B. K.; Jia, X. B.; Lu, Y.; Chen, Y. Radially Microstructural Design of LiNi0.8C0.1Mn0.1O2 Cathode Material Toward Long-Term Cyclability and High Rate Capability at High Voltage. ACS. Appl. Energ. Mater. 2020, 3(7), 6657–6669. DOI: 10.1021/acsaem.0c00803.
  • Xiong, J. W.; Zheng, T. L.; Cheng, Y. J.; Sun, J. L.; Cao, R. G.; Xia, Y. G. Sulfur is a New High-Performance Additive Toward High-Voltage LiNi0.5Co0.2Mn0.3O2 Cathode: Tiny Amount, Huge Impact. ACS Appl. Mater. Interfaces.2021, 13(16), 18648–18657. (J ELECTROCHEM SOC. 2017, 164(1): 6116-6122). DOI: 10.1021/acsami.1c00391.
  • Huang, B.; Wang, M.; Zhang, X. W.; Xu, G. D.; Gu, Y. J. Optimized Preparation of LiNi0.6Mn0.2Co0.2O2 with Single Crystal Morphology Cathode Material for Lithium-Ion Batteries. Ionics. 2020, 26(6), 2689–2698. DOI: 10.1007/s11581-020-03445-4.
  • Shang, H. M.; Jiang, J. J.; Zhang, H.; Niu, W. C.; Qiao, Y. J.; Zhou, H. X.; Li, T. H.; Qu, M. Z.; Peng, G. C.; Xie, Z. W. 7-Hydroxycoumarin as a Novel Film-Forming Additive for LiNi0.5Mn1.5O4 Cathode at Elevated Temperature. Chem. Electrochem. 2020, 7(22), 4655–4662. DOI: 10.1002/celc.202001167.
  • Markevich, E.; Salitra, G.; Hartmann, P.; Kulisch, J.; Aurbach, D.; Park, K. J.; Yoon, C. S.; Sun, Y. K. New Insights Related to Rechargeable Lithium Batteries: Li Metal Anodes, Ni Rich LiNixcoymnzo2 Cathodes and Beyond Them. J. Electrochem. Soc. 2019, 166(3), A5265–A5274. DOI: 10.1149/2.0261903jes.
  • Chang, S. H.; Li, Y. J.; Zheng, J. C.; Zhang, D. W.; Yang, J. C.; Chen, Y. X.; Guo, J.; Zhu, J.; Xiong, Y. K.; Li, W. Modification on the Structural Stability of LiNi0.8co0.1mn0.1o2 Cathode Materials via Pr-Doping by the Solid-State Method. Ionics. 2020, 26(11), 5417–5426. DOI: 10.1007/s11581-020-03700-8.
  • Li, S.; Han, Y.; Geng, T.; Wang, P.; Li, W.; Yang, L.; Li, Z. Investigation on the Temperature Tolerance of LiMn2o4 in Lithium-Ion Batteries. New J. Chem. 2020, 44(22), 9540–9545. DOI: 10.1039/C9NJ05530D.
  • Xu, C. L.; Xiang, W.; Wu, Z. G.; Xu, Y. D.; Li, Y. C.; Wang, Y.; Xiao, Y.; Guo, X. D.; Zhong, B. H. Highly Stabilized Ni-Rich Cathode Material with Mo Induced Epitaxially Grown Nanostructured Hybrid Surface for High-Performance Lithium-Ion Batteries. ACS Appl. Mater. Interfaces. 2019, 11(18), 16629–16638. DOI: 10.1021/acsami.9b03403.
  • Xu, D. Y.; Xiang, W.; Wu, Z. G.; Xu, C. L.; Li, Y. C.; Guo, X. D.; Lv, G. P.; Peng, X.; Zhong, B. H. Improving Cycling Performance and Rate Capability of Ni-Rich LiNi0.8co0.1mn0.1o2 Cathode Materials by Li4ti5o12 Coating. Electrochim. Acta. 2018, 268, 358–365. DOI: 10.1016/j.electacta.2018.02.049.
  • Chen, P. H.; Wu, H.; Huang, S. S.; Zhang, Y. Template Synthesis and Lithium Storage Performances of Hollow Spherical LiMn2o4 Cathode Materials. Ceram. Int. 2016, 42(8), 10498–10505. DOI: 10.1016/j.ceramint.2016.03.081.
  • Xu, D.; Yang, F.; Liu, Z.; Zeng, X.; Liao, S. Effects of Co Doping Sites on the Electrochemical Performance of LiNi0.5Mn1.5O4 as a Cathode Material. Ionics. 2020, 26(8), 1–7. DOI: 10.1007/s11581-019-03224-w.
  • Nisar, U.; Al-Hail, S. A. J. A.; Kumar, P. R.; Abraham, J. J.; Mesallam, S. M. A.; Shakoor, R. A.; Amin, R.; Essehli, R.; Alqaradawi, S. Fast and Scalable Synthesis of LiNi0.5Mn1.5O4 Cathode by Sol–gel-Assisted Microwave Sintering. Energy Technol-Ger. 2021, 9(7), 2100085. DOI: 10.1002/ente.202100085.
  • Jiang, G. H.; Zhang, Y. N.; Meng, Q.; Zhang, Y. J.; Dong, P.; Zhang, M. Y.; Yang, X. Direct Regeneration of LiNi0.5co0.2mn0.3o2 Cathode from Spent Lithium-Ion Batteries by the Molten Salts Method. ACS Sustainable Chem. Eng. 2020, 8(49), 18138–18147. DOI: 10.1021/acssuschemeng.0c06514.
  • Yu, Z. Y.; Yu, T. L.; Li, W. J.; Hao, J. S.; Liu, H. X.; Sun, N.; Lu, M. Y.; Ma, J. Improved Electrochemical Performances of Carbon-Coated Li2moo3 Cathode Materials for Li-Ion Batteries. Int. J. Electrochem. Sc. 2018, 4504–4511. doi:10.20964/2018.05.64.
  • Han, Y. Q.; You, Y.; Hou, C.; Xiao, X.; Xing, Y. R.; Zhao, Y. J. Regeneration of Single-Crystal LiNi0.5Co0.2Mn0.3O2 cathode Materials from Spent Power Lithium-Ion Batteries. J. Electrochem. Soc. 2021, 168(4), 040525. DOI: 10.1149/1945-7111/abf4e8.
  • Shi, J. L.; Xiao, D. D.; Ge, M. Y.; Yu, X. Q.; Chu, Y.; Huang, X. J.; Zhang, X. D.; Yin, Y. X.; Yang, X. Q.; Guo, Y. G., et al. High-Capacity Cathode Material with High Voltage for Li-Ion Batteries. Adv. Mater. 2018, 30(9), 1705575. DOI: 10.1002/adma.201705575.
  • Du, J. J.; Zhou, M.; Zhang, X. L.; Fang, Z.; Wang, B.; Li, Q.; Guo, Y. H.; Liu, Z. Q. Comparative Study on the Morphology and Electrochemical Performance of Self-Made and Commercial LiNi0.5Mn1.5O4 Electrode. Int J Electrochem Sc. 2021, 16, 210653. DOI: 10.20964/2021.06.47.
  • Xu, H. T.; Zhang, H. R.; Ma, J.; Xu, G. J.; Dong, T. T.; Chen, J. C.; Cui, G. L. Overcoming the Challenges of 5 V Spinel LiNi0.5Mn1.5O4 Cathodes with Solid Polymer Electrolytes. Acs. Energy. Lett. 2019, 4(12), 2871–2886. DOI: 10.1021/acsenergylett.9b01871.
  • Zeng, F. F.; Zhang, Y.; Shao, Z. C.; Li, Z. Y.; Dai, S. H. The Influence of Different Calcination Temperatures and Times on the Chemical Performance of LiNi0.5Mn1.5O4 Cathode Materials. Ionics. 2021, 27(9), 3739–3748. DOI: 10.1007/s11581-021-04167-x.
  • Wang, Y.; Feng, Z. S.; Chen, J. J.; Zhang, C.; Jin, X.; Hu, J. First Principles Study on Electronic Properties and Occupancy Sites of Molybdenum Doped into LiFePo4. Solid State Commun. 2012, 152(16), 1577–1580. DOI: 10.1016/j.ssc.2012.05.018.
  • Li, X.; Huang, Y. Y.; Wang, J. S.; Miao, L.; Li, Y. Y.; Liu, Y.; Qiu, Y. G.; Fang, C.; Han, J. T.; Huang, Y. H. High Valence Mo-Doped Na3v2(po4)3/c as a High Rate and Stable Cycle-Life Cathode for Sodium Battery. J. Mater. Chem. A. 2018, 6(4), 1390–1396. DOI: 10.1039/C7TA08970H.
  • Huang, T.; Zheng, X. Z.; Pan, Y.; Li, Q. H.; Wu, M. X. Effect of Tributyl Borate on Electrochemical Performance at an Elevated Temperature of High-Voltage LiNi0.5mn1.5o4 Cathode. ACS Appl. Mater. Interfaces. 2019, 11(30), 26872–26879. DOI: 10.1021/acsami.9b07126.
  • Wei, A. J.; Li, W.; Chang, Q.; Bai, X.; He, R.; Zhang, L. H.; Liu, Z. F.; Wang, Y. J. Effect of Mg2+/f− Co-Doping on Electrochemical Performance of LiNi0.5mn1.5o4 for 5 V Lithium-Ion Batteries. Electrochim. Acta. 2019, 323, 134692. DOI: 10.1016/j.electacta.2019.134692.
  • Li, L.; Zhao, R.; Pan, D.; Yi, S. H.; Gao, L. F.; He, G. J.; Zhao, H. L.; Yu, C. Y.; Bai, Y. Constructing Tri-Functional Modification for Spinel LiNi0.5Mn1.5O4 via Fast Ion Conductor. J. Power Sources. 2020, 450, 227677. DOI: 10.1016/j.jpowsour.2019.227677.
  • Zhang, Y.; Shao, Z. C. Preparation of Mo-Doping LiFePo4/c by Carbon Reduction Method. Mater. Manuf. Process. 2020, 36(4), 419–425. DOI: 10.1080/10426914.2020.1843669.
  • Chen, Z. Q.; Liu, C. Y.; Sun, G. Y.; Kong, X. B.; Lai, S. B.; Li, J. Y.; Zhou, R.; Wang, J.; Zhao, J. B. Electrochemical Degradation Mechanism and Thermal Behaviors of the Stored LiNi0.5Co0.2Mn0.3O2 Cathode Materials. ACS Appl. Mater. Interfaces. 2018, 10(30), 25454–25464. DOI: 10.1021/acsami.8b07873.
  • Lu, H.; He, L.; Yuan, Y.; Zhu, Y.; Zheng, B.; Zheng, X. Z.; Liu, C. C.; Du, H. L. Synergistic Effect of Fluorinated Solvents for Improving High Voltage Performance of LiNi0.5 Mn1.5 O4 cathode. J. Electrochem. Soc. 2020, 167(12), 120534. DOI: 10.1149/1945-7111/abb34a.
  • Channu, V. S. R.; Rambabu, B.; Kumari, K.; Kalluru, R. R.; Holze, R. High Performance Lithium Insertion Negative Electrode Materials For Electrochemical Devices. Appl. Surf. Sci. 2016, 387, 839–845. DOI: 10.1016/j.apsusc.2016.07.017.
  • Shang, H. M.; Peng, G. C.; Liu, W. J.; Zhang, H.; Niu, W. C.; Liao, Y. L.; Qu, M. Z., and Xie, Z. W. Improving the Cyclic Stability of LiNi0.5mn1.5o4 at High Cutoff Voltage by Using Pyrene as a Novel Additive. Energy. Technol-Ger. 2020, 8(10), 200671. DOI: 10.1002/ente.202000671.
  • Wang, L. C.; Li, L.; Zhang, X. X.; Wu, F.; Chen, R. J. Compound-Hierarchical-Sphere LiNi0.5Co0.2Mn0.3O2: Synthesis, Structure, and Electrochemical Characterization. ACS Appl. Mater. Interfaces. 2018, 10(38), 32120–32127. DOI: 10.1021/acsami.8b09985.
  • Chen, Z. Y.; Gong, X. L.; Zhu, H. L.; Cao, K. F.; Liu, Q. M.; Liu, J.; Li, L. J.; Duan, J. F. High Performance and Structural Stability of K and Cl Co-Doped LiNi0.5Co0.2Mn0.3O2 Cathode Materials in 4.6 Voltage. Front. Chem. 2018, 6, 643. DOI: 10.3389/fchem.2018.00643.
  • Lu, Y.; Jin, H. F.; Mo, Y.; Qu, Y. Y.; Du, B. D., and Chen, Y. Synthesis and Characterization of Cu-Doped LiNi0.6Co0.2Mn0.2O2 Materials for Li-Ion Batteries. J. Alloy Compd. 2020, 844. DOI:10.1016/j.jallcom.2020.156180
  • Luo, R. J.; Chen, W.; Fang, H. S. Implication of Lithium Excess Induced Structure and Electrochemical Behavior Changes of LiNi Mn1.5O4 spinel. J. Electrochem. Soc. 2021, 168(4), 040527. DOI: 10.1149/1945-7111/abf5a6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.