578
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Influence of heat input on weld integrity of weldments of two dissimilar steels

ORCID Icon, &
Pages 379-400 | Received 13 Feb 2022, Accepted 18 Apr 2022, Published online: 22 May 2022

References

  • Samal, M. K.; Seidenfuss, M.; Roos, E.; Balani, K. Investigation of Failure Behavior of Ferritic-Austenitic Type of Dissimilar Steel Welded Joints. Eng. Fail. Anal. 2011, 18(3), 999–1008. DOI: 10.1016/j.engfailanal.2010.12.011.
  • Mahajan, S.; Chhibber, R. Investigations on Dissimilar Welding of P91/SS304L Using Nickel-Based Electrodes. Mater. Manuf. Processes. 2020, 35(9), 1010–1023. DOI: 10.1080/10426914.2020.1755041.
  • Verma, J.; Taiwade, R. V. Effect of Welding Processes and Conditions on the Microstructure, Mechanical Properties and Corrosion Resistance of Duplex Stainless Steel Weldments—a Review. J. Manuf. Processes. Elsevier Ltd January 1, 2017, 25, 134–152. https://doi.org/10.1016/j.jmapro.2016.11.003
  • Zhou, Z.; Löthman, J. Dissimilar Welding of Super-Duplex and Super-Austenitic Stainless Steels. Weld. World. 2017, 61(1), 21–33. DOI: 10.1007/S40194-016-0408-7/FIGURES/18.
  • Khan, W. N.; Chhibber, R. Effect of Filler Metal on Solidification, Microstructure and Mechanical Properties of Dissimilar Super Duplex/pipeline Steel GTA Weld. Mater. Sci. Eng. A. 2021, 803, 140476. DOI: 10.1016/j.msea.2020.140476.
  • Rahmani, M.; Eghlimi, A.; Shamanian, M. Evaluation of Microstructure and Mechanical Properties in Dissimilar Austenitic/super Duplex Stainless Steel Joint. J. Mater. Eng. Perform. 2014, 23(10), 3745–3753. DOI: 10.1007/s11665-014-1136-z.
  • Pramanik, A.; Littlefair, G.; Basak, A. K. Weldability of Duplex Stainless Steel. Mater. Manuf. Processes. 2015, 30(9), 1053–1068. DOI: 10.1080/10426914.2015.1019126.
  • Maurya, A. K.; Pandey, C.; Chhibber, R. Dissimilar Welding of Duplex Stainless Steel with Ni Alloys: A Review. Int. J. Pressure Vessels Pip. 2021, 192, 104439. DOI: https://doi.org/10.1016/j.ijpvp.2021.104439.
  • Nissley, N.; Anderson, T. D.; Noecker, F. F.; Roepke, C.; Gallagher, M.; Hukle, M. Dissimilar Metal Welding of Nitronic 50 HS® and 25% Cr Super Duplex Stainless Steel. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, American Society of Mechanical Engineers (ASME), 2014, Vol. 5. 10.1115/OMAE2014-24706.
  • Fellicia, D. M.; Kurniawan, B. A.; Wulanari, D.; Purniawan, A.; Wibisono, A. T. Study of Sigma Phase in Duplex SAF 2507. IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 2017, Vol. 202. 10.1088/1757-899X/202/1/012039.
  • Ramirez, A. J.; Lippold, J. C.; Brandi, S. D. The Relationship Between Chromium Nitride and Secondary Austenite Precipitation in Duplex Stainless Steels. Metall. Mater. Trans. A. 2003, 34A(8), 1575–1597. DOI: 10.1007/S11661-003-0304-9.
  • Yamashita, S.; Ike, K.; Yamasaki, K.; Wei, F.-G.; Wang, K.; Ogura, T.; Saida, K. Relationship Between Ferrite–austenite Phase Transformation and Precipitation Behavior of Sigma Phase in Super Duplex Stainless Steel Weldment. Weld. World 2021. 2022, 1, 1–12. DOI: 10.1007/S40194-021-01239-4.
  • Muthupandi, V.; Bala Srinivasan, P.; Seshadri, S. K.; Sundaresan, S. Effect of Weld Metal Chemistry and Heat Input on the Structure and Properties of Duplex Stainless Steel Welds. Mater. Sci. Eng. A. 2003, 358(1–2), 9–16. DOI: 10.1016/S0921-5093(03)00077-7.
  • Moi, S. C.; Pal, P. K.; Bandyopadhyay, A.; Rudrapati, R. Effect of Heat Input on the Mechanical and Metallurgical Characteristics of TIG Welded Joints. J. Mech. Eng. (JMechE). 2021, 16(2), 29–40. DOI: 10.21491/JMECHE.V16I2.15324.
  • Maurya, A. K.; Pandey, C.; Chhibber, R. Effect of Filler Metal Composition on Microstructural and Mechanical Characterization of Dissimilar Welded Joint of Nitronic Steel and Super Duplex Stainless Steel. Arch. Civil Mech. Eng. 2022, 22(2), 1–28. DOI: 10.1007/S43452-022-00413-9.
  • Khan, W. N.; Chhibber, R. Experimental Investigation on Dissimilar Weld Between Super Duplex Stainless Steel 2507 and API X70 Pipeline Steel. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 146442072110130. 10.1177/14644207211013056.
  • Gupta, A.; Kumar, A.; Baskaran, T.; Arya, S. B.; Khatirkar, R. K. Effect of Heat Input on Microstructure and Corrosion Behavior of Duplex Stainless Steel Shielded Metal Arc Welds. Trans. Indian Inst. Met. 2018, 71(7), 1595–1606. DOI: 10.1007/S12666-018-1294-Z/TABLES/6.
  • Tasalloti, H.; Kah, P.; Martikainen, J. Effect of Heat Input on Dissimilar Welds of Ultra High Strength Steel and Duplex Stainless Steel: Microstructural and Compositional Analysis. Mater. Charact. 2017, 123, 29–41. DOI: 10.1016/J.MATCHAR.2016.11.014.
  • Nowacki, J.; Rybicki, P. The Influence of Welding Heat Input on Submerged Arc Welded Duplex Steel Joints Imperfections. J Mater. Process. Technol. 2005, 164–165, 1082–1088. DOI: 10.1016/J.JMATPROTEC.2005.02.079.
  • Nowacki, J.; Rybicki, P.; Piastow, A. Corrosion Resistance of SAW Duplex Joints Welded with High Heat Input. J. Achiev. Mater. Manuf. Eng. 2007, 23(2), 7–14.
  • Sadeghian, M.; Shamanian, M.; Shafyei, A. Effect of Heat Input on Microstructure and Mechanical Properties of Dissimilar Joints Between Super Duplex Stainless Steel and High Strength Low Alloy Steel. Mater. Des. 2014, 60, 678–684. DOI: 10.1016/j.matdes.2014.03.057.
  • Ouali, N.; Khenfer, K.; Belkessa, B.; Fajoui, J.; Cheniti, B.; Idir, B.; Branchu, S. Effect of Heat Input on Microstructure, Residual Stress, and Corrosion Resistance of UNS 32101 Lean Duplex Stainless Steel Weld Joints. J. Mater. Eng. Perform. 2019, 28(7), 4252–4264. DOI: 10.1007/S11665-019-04194-W/FIGURES/15.
  • Vahman, M.; Shamanian, M.; Golozar, M. A.; Jalali, A.; Sarmadi, M. A.; Kangazian, J. The Effect of Welding Heat Input on the Structure–property Relationship of a New Grade Super Duplex Stainless Steel. Steel Res. Int. 2020, 91(1), 1900347. DOI: 10.1002/srin.201900347.
  • Yousefieh, M.; Shamanian, M.; Saatchi, A. Influence of Heat Input in Pulsed Current GTAW Process on Microstructure and Corrosion Resistance of Duplex Stainless Steel Welds. J. Iron Steel Res. Int. 2011, 18(9), 65–69. DOI: 10.1016/S1006-706X(12)60036-3.
  • Bhattacharya, A.; Kumar, R. Dissimilar Joining Between Austenitic and Duplex Stainless Steel in Double-Shielded GMAW: A Comparative Study. Mater. Manuf. Processes. 2016, 31(3), 300–310. DOI: 10.1080/10426914.2015.1070414.
  • Madhusudhan Reddy, G.; Mohandas, T.; Sambasiva Rao, A.; Satyanarayana, V. V. Influence of Welding Processes on Microstructure and Mechanical Properties of Dissimilar Austenitic-Ferritic Stainless Steel Welds. Mater. Manuf. Processes. 2005, 20(2), 147–173. DOI: 10.1081/AMP-200041844.
  • Kumar, S.; Shahi, A. S. Effect of Heat Input on the Microstructure and Mechanical Properties of Gas Tungsten Arc Welded AISI 304 Stainless Steel Joints. Mater. Des. 2011, 32(6), 3617–3623. DOI: 10.1016/j.matdes.2011.02.017.
  • Code-Steel; Structural Welding. Aws D1. 1/d1. 1m; American Welding Society, 2010.
  • Fujiyama, S.; Shigeta, M.; Tanaka, M. Comparison Between Methods Measuring Arc Efficiency of Gas Tungsten Arc Welding. Sci. Technol. Weld. Joining. 2021, 26(5), 371–376. DOI: 10.1080/13621718.2021.1921101.
  • Cotrim-Ferreira, C. L.; Peralta, P. E. G., and Siqueira, D. F. ASTM E3-01: Standard Guide for Preparation of Metallographic Specimens. In Brazilian Oral Research; SciELO Brasil, 2010; pp. 438–442.
  • ASTM E8. ASTM E8/E8M Standard Test Methods for Tension Testing of Metallic Materials 1. Annu. Book ASTM Stand. 2010, 4, No. C, 1–27. 10.1520/E0008
  • ASTM American Society for Testing and Materials; ASTM E 23-12c. Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. ASTM Int. 2012. 10.1520/E0023-18
  • ASTM E92-17. Astm2017standard, Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. West Conshohocken (PA): ASTM Int. 2017, 1–27. doi:10.1520/E0092-17.2.
  • Jr, R. M. Principles of Welding: Processes, Physics, Chemistry, and Metallurgy, 2008.
  • Kou, S.; Yang, Y. K. Fusion-Boundary Macrosegregation in Dissimilar-Filler Welds. Weld. J. New York. 2007, 86(10), 303.
  • Yang, Y. K.; Kou, S. Evidence of Macrosegregation Near Fusion Boundary in Welds Made with Dissimilar Filler Metals. Materials Science and Technology Conference and Exhibition, MS and T’07 - “Exploring Structure, Processing, and Applications Across Multiple Materials Systems”, 2007, Vol. 5, pp 3220–3231.
  • Soysal, T.; Kou, S.; Tat, D.; Pasang, T. Macrosegregation in Dissimilar-Metal Fusion Welding. Acta. Mater. 2016, 110, 149–160. DOI: 10.1016/j.actamat.2016.03.004.
  • Kumar, S.; Pandey, C.; Goyal, A. Role of Dissimilar IN617 Nickel Alloy Consumable on Microstructural and Mechanical Behavior of P91 Welds Joint. Arch. Civil Mech. Eng. 2020, 20(3), 1–27. DOI: 10.1007/S43452-020-00104-3.
  • Jula, M.; Dehmolaei, R.; Alavi Zaree, S. R. The Comparative Evaluation of AISI 316/A387-Gr.91 Steels Dissimilar Weld Metal Produced by CCGTAW and PCGTAW Processes. J. Manuf. Processes. 2018, 36, 272–280. DOI: 10.1016/J.JMAPRO.2018.10.032.
  • Saedi, A. H.; Hajjari, E.; Sadrossadat, S. M. Microstructural Characterization and Mechanical Properties of TIG-Welded API 5L X60 HSLA Steel and AISI 310S Stainless Steel Dissimilar Joints. Metall. Mater. Trans. A. 2018, 49(11), 5497–5508. DOI: 10.1007/S11661-018-4890-Y/FIGURES/13.
  • Nelson, T.W.; Lippold, J.C.; Mills, M.J. Nature and Evolution of the Fusion Boundary in Ferritic-Austenitic Dissimilar Metal Welds—part 2: On-Cooling Transformations. Weld. Res. 2000, 10, 267–277.
  • Dong, H.; Hao, X.; Deng, D. Effect of Welding Heat Input on Microstructure and Mechanical Properties of HSLA Steel Joint. Metall. Microstruct. Anal. 2014, 3(2), 138–146. DOI: 10.1007/S13632-014-0130-Z/FIGURES/9.
  • Mukherjee, M.; Pal, T. K. Influence of Heat Input on Martensite Formation and Impact Property of Ferritic-Austenitic Dissimilar Weld Metals. J. Mater. Sci. Technol. 2012, 28(4), 343–352. DOI: 10.1016/S1005-0302(12)60066-8.
  • Ping, D. H.; Guo, S. Q.; Imura, M.; Liu, X.; Ohmura, T.; Ohnuma, M.; Lu, X.; Abe, T.; Onodera, H. Lath Formation Mechanisms and Twinning as Lath Martensite Substructures in an Ultra Low-Carbon Iron Alloy. Sci. Rep. 2018, 8(1), 1–11. DOI: 10.1038/s41598-018-32679-6.
  • Kumar, R. Oxidation Behavior of Microstructurally Different Regions of TIG Weldment in ASTM SA 210 GrA1 Boiler Steel. Mater. Perform. Charact. 2020, 9(1), 277–283. DOI: 10.1520/MPC20200010.
  • Guo, W. G.; Nemat-Nasser, S. Flow Stress of Nitronic-50 Stainless Steel Over a Wide Range of Strain Rates and Temperatures. Mech. Mater. 2006, 38(11), 1090–1103. DOI: 10.1016/j.mechmat.2006.01.004.
  • Yang, Y.; Yan, B.; Li, J.; Wang, J. The Effect of Large Heat Input on the Microstructure and Corrosion Behaviour of Simulated Heat Affected Zone in 2205 Duplex Stainless Steel. Corros. Sci. 2011, 53(11), 3756–3763. DOI: 10.1016/j.corsci.2011.07.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.