1,329
Views
10
CrossRef citations to date
0
Altmetric
Review

Recent trends and future outlooks in manufacturing methods and applications of FGM: a comprehensive review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1033-1067 | Received 07 Aug 2021, Accepted 05 May 2022, Published online: 16 Jun 2022

References

  • Parmar, H.; Tucci, F.; Carlone, P.; Sudarshan, T. S. Metallisation of Polymers and Polymer Matrix Composites by Cold Spray: State of the Art and Research Perspectives. Int. Mater. Rev. 2021, 1–25. DOI: 10.1080/09506608.2021.1954805.
  • Liu, C.; Li, F.; Lai-Peng, M.; Cheng, H. M. Advanced Materials for Energy Storage. Adv. Mater. 2010, 22(8), 28–62. DOI: 10.1002/adma.200903328.
  • Griffiths, J. P.; Pinnell, C. R. Production of Decorative and Ornamental Rubber Products. Rubber Chem. Technol. 1940, 13(3), 676–685. DOI: 10.5254/1.3546549.
  • Ismail, H.; Rosnah, N.; Rozman, H. D. Curing Characteristics and Mechanical Properties of Short Oil Palm Fibre Reinforced Rubber Composites. Polymer (Guildf.). 1997, 38(16), 4059–4064. DOI: 10.1016/S0032-3861(96)00993-7.
  • Koizumi, M. Proceedings of the 16th Annual Conference on Composites and Advanced Ceramic Materials: Ceramic Engineering and Science Proceedings. Wachtman Jr., John B. ; Westerville, Ohio: The American Ceramic Society. 1992, 13, 332–347 https://doi.org/10.1002/9780470313954.ch33.
  • Mahamood, R. M., and Akinlabi, E. T. Types of Functionally Graded Materials and Their Areas of Application. In Functionally Graded Materials ed. Bergmann, C. P.; Switzerland: Springer, 2017; pp. 9–21 doi:10.1007/978-3-319-53756-6_2.
  • Miyamoto, Y.; Kaysser, W. A.; Rabin, B. H.; Kawasaki, A., and Ford, R. G. Functionally Graded Materials: Design, Processing and Applications; New York: Springer Science & Business Media, 2013; Vol. 5.
  • Zhao S, Zhao Z, Yang Z, Ke L, Kitipornchai S and Yang J. (2020). Functionally graded graphene reinforced composite structures: A review. Engineering Structures, 210, 110339. doi: 10.1016/j.engstruct.2020.110339.
  • Shinohara, Y. Functionally Graded Materials. Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties. 2nd ed. Somiya, S.; United States: Academic Press, 2013. doi:10.1016/B978-0-12-385469-8.00061-7 .
  • Zhang, C.; Chen, F.; Huang, Z.; Jia, M.; Chen, G.; Ye, Y.; Lin, Y.; Liu, W.; Chen, B., and Shen, Q., et al. Additive Manufacturing of Functionally Graded Materials: A Review. Mater. Sci. Eng. A. 2019, 764(May), 1–29 doi:10.1016/j.msea.2019.138209.
  • Liu, Z.; Meyers, M. A.; Zhang, Z.; Ritchie, R. O. Functional Gradients and Heterogeneities in Biological Materials: Design Principles, Functions, and Bioinspired Applications. Prog. Mater. Sci. 2017, 88, 467–498. DOI: 10.1016/j.pmatsci.2017.04.013.
  • Rajan, T. P. D., and Pai, B. C.; Developments in Processing of Functionally Gradient Metals and Metal–Ceramic Composites: A Review. Acta Metall. Sin. (Engl. Lett.). 2019, 27(5), 825–838 doi:10.1007/s40195-014-0142-3.
  • Popovich, V. A.; Borisov, E. V., Popovich, A. A., Sufiiarov, V. Sh., Masaylo, D. V., Alzina, L. Functionally graded Inconel 718 processed by additive Manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties. Mat. Desi. 2017, 114(2), 441–449. DOI: 10.1016/j.matdes.2016.10.075.
  • Melchels, F. P. W.; Bertoldi, K.; Gabbrielli, R.; Velders, A. H., Feijen, J., Grijpma, D. W. Mathematically Defined Tissue Engineering Scaffold Architectures Prepared by Stereolithography. Bio. 31. 2010, 6909–6916. DOI: 10.1016/j.biomaterials.2010.05.068.
  • Mahamood, R. M.; Akinlabi, E. T. Processing Methods of Functionally Graded Materials. In Topics in Mining, Metallurgy and Materials Engineering; Springer International Publishing, 2017; pp. 23–45. DOI: 10.1007/978-3-319-53756-6_3.
  • Watanabe, R.; Nishida, T.; Hirai, T. Present Status of Research on Design and Processing of Functionally Graded Materials. Met. Mater. Int. 2003, 9(6), 513–519. DOI: 10.1007/BF03027249.
  • Janssen, J. J. A. Mechanical Properties of Bamboo; Springer Science & Business Media, 2012; Vol. 37. DOI: 10.1007/978-94-011-3236-7.
  • Watanabe, Y.; Inaguma, Y.; Sato, H.; Miura-Fujiwara, E. A Novel Fabrication Method for Functionally Graded Materials Under Centrifugal Force: The Centrifugal Mixed-Powder Method. Mater. (Basel). 2009, 2(4), 2510–2525. DOI: https://doi.org/10.3390/ma2042510.
  • Maia, M. A.; Parente, E.; de Melo, A. M. C. Kriging-Based Optimization of Functionally Graded Structures. Struct. Multidiscip. Optim. 2021, 64(4), 1887–1908. DOI: 10.1007/s00158-021-02949-5.
  • Reichardt, A.; Shapiro, A. A.; Otis, R.; Dillon, R. P.; Borgonia, J. P.; McEnerney, B. W.; Hosemann, P., and Beese, A. M. Advances in Additive Manufacturing of Metal-Based Functionally Graded Materials. Int. Mater. Rev 66(1) . 2020, 1–29 doi:10.1080/09506608.2019.1709354.
  • Parihar, R. S.; Setti, S. G.; Sahu, R. K. Recent Advances in the Manufacturing Processes of Functionally Graded Materials: A Review. Sci. Eng. Compos. Mater. 2018, 25(2), 309–336. DOI: https://doi.org/10.1515/secm-2015-0395.
  • Scaffaro, R.; Lopresti, F.; Maio, A.; Sutera, F.; Botta, L. Development of Polymeric Functionally Graded Scaffolds: A Brief Review. J. Appl. Biomater. Funct. Mater. 2017, 15(2), 107–121. DOI: 10.5301/jabfm.5000332.
  • Kumar, P. V.; Jebakani, D.; Velmurugan, C.; Senthilkumar, V. Effect of SiC on Mechanical and Microstructural Characteristics of Al Based Functionally Graded Material. Silicon. 2022, 14(3), 1247–1252. DOI: 10.1007/s12633-020-00933-0.
  • Surya, M. S.; Prasanthi, G. Effect of Silicon Carbide Weight Percentage and Number of Layers on Microstructural and Mechanical Properties of Al7075/sic Functionally Graded Material. Silicon. 2021, 1–10. DOI: 10.1007/s12633-020-00865-9.
  • Niino, M. Functionally Gradient Materials as Thermal Barrier for Space Plane. J. Jpn. Compos. Mater. 1987, 13, 257–264. DOI: 10.6089/jscm.13.257.
  • Koizumi, M. FGM Activities in Japan. Compos. Part B Eng. 1997, 28(1–2), 1–4. DOI: https://doi.org/10.1016/S1359-8368(96)00016-9.
  • Gasik, M. M. Functionally Graded Materials: Bulk Processing Techniques. Int. J. Mater. Prod. Technol. 2010, 39(1–2), 20–29. DOI: 10.1504/IJMPT.2010.034257.
  • Farid, T.; Rafiq, M. I.; Ali, A.; Tang, W. Transforming Wood as Next‐generation Structural and Functional Materials for a Sustainable Future. EcoMat. 2022, 4(1), 1–48. DOI: 10.1002/eom2.12154.
  • Lezgy-Nazargah, M. Fully Coupled Thermo-Mechanical Analysis of Bi-Directional FGM Beams Using NURBS Isogeometric Finite Element Approach. Aerosp. Sci. Technol. 2015, 45, 154–164. DOI: https://doi.org/10.1016/j.ast.2015.05.006.
  • Dubelman, M. E.; Yang, X.; Thompson, M. K. Additive Manufacturing Method for Functionally Graded Material. US 11,104,066 B2, 2021.
  • Shetty, D.; Cutler, R.; Sygnatowicz, M. M. Functionally Graded Carbides. WO Patent 2016/118879 Al, 2016.
  • Welch, J.C., Z. Xu, and J.A. Oxford, Additive manufacturing of functionally gradient degradable tools. 2018, U.S Patent 10, 059, 092 B2
  • Paschkewitz, J. S.; Iftime, G.; Beck, V. A.; Johnson, D. M. System and Method for Digital Fabrication of Graded, Hierarchical Material Structures. US 9,821,339 B2, 2017.
  • Sharma, A. K., and Gupta, D. A Method of Cladding/coating of Metallic and Nonmetallic Powders on Metallic Substrates by Microwave Irradiation. 2010. Indian Patent 527/DEL/2010.
  • Lomasney, C. A.; Whitaker, J. D.; Flinn, B.; Bordia, R. K. Functionally Graded Coatings and Claddings for Corrosion and High Temperature Protection. CA Patent 2764968 C, 2018.
  • Landau, J. G. Functionally Graded Additive Manufacturing with in situ Heat Treatment. US 2013/0015609 A1, 2013.
  • Gandy, D. W.; Coleman, K. K.; Shingledecker, J. Method of Manufacturing a Weld-Free Apparatus for Connection of Dissimilar Metals Using Functionally Graded Compositionally Control Powder Metallurgy and Hot Isostatic Processing Methods. US 2013/0121868 A1, 2013.
  • Mather, P.; Luo, X.; DiOrio, A. M.; Lee, K.-M. Functionally Graded Shape Memory Polymer. US 10,471,648 B2, 2012.
  • Zhang, Y.; Kim, J.; Thompson, V. P. Graded Glass/ceramic/glass Structures for Damage Resistant Ceramic Dental and Orthopedic Prostheses. US 2011/0123956A1, 2011.
  • Subramanian, S.; Steibel, J. D.; Carper, D. M.; Darkins, T. G., Jr Functionally Gradient SiC/sic Ceramic Matrix Composites with Tailored Properties for Turbine Engine Applications. US 7,597,838 B2, 2009.
  • Gallant, F. M.; Bruck, H. A.; Bigio, D. I. Process for Making Gradient Materials. US 7,632.433 B1, 2009.
  • Belousov, I. V.; Malashenko, I. S.; Serhiyenko, G. A.; Memmen, R. L.; Rutz, D. A.; Kinstler, M. D.; Shelkovoi, A. N. Vapor Deposition of Dissimilar Materials. US 7,329.436 B2, 2008.
  • Padhi, D.; Park, S.; Balasubramanian, G.; Rocha-Alvarez, J. C.; Xia, L.-Q.; Witty, D. R.; M’-Saad, H. Method to Deposit Functionally Graded Dielectric Films via Chemical Vapor Deposition Using Viscous Precursors. US 7,166,544 B2, 2007.
  • Sewing, A.; Dard, M.; Roessler, S.; Scharnweber, D.; Worch, H. Process for the Coating for Metallic Implant Materials. US 7,229,545 B2, 2007.
  • Raybould, D.; Duffy, T.; Floyd, M. Method for Producing Functionally Graded Coatings Using Cold Gas-Dynamic Spraying. US 2007/0098.912 A1, 2007.
  • La Forest, M. L.; Parker, C. A.; Dillon, F.; Siegmund, T. H.; Cipra, R. J.; Fatz, A. E.; Braunisch, P. F.; Cordell, T. Manufacture of Functionally Graded Carbon-Carbon Composites. US 7,063,870 B2, 2006.
  • Moore, J. J.; Zhong, D. Functionally Graded Alumina-Based Thin Film Systems. US 7,096.921 B2, 2005.
  • Stenzel, O. W.; Czerwinski, K.; Postler, I.; Reinsch, B. Metal-Ceramic Composite Material Body and Method for Producing the Same. US 6,849,342 B1, 2005.
  • Dilmore, M. F.; Meeks, H. S., III; Fleming, M. S. Metal Consolidation Process Applicable to Functionally Gradient Material (FGM) Compositons of Tungsten, Nickel, Iron, and Cobalt. US 6,355,209 B1, 2002.
  • Munir, Z. A.; Lai, W. N.; Risbud, S. H., and McCoy, B. J. Centrifugal Synthesis and Processing of Functionally Graded Materials. 2000. US Patent US6136452A.
  • Pojman, J. A., and McCardle, T. W. Functionally Gradient Polymeric Materials. 2000. US Patent US6057406A.
  • Giannakopoulos, A. E., and Suresh, S. Method and Apparatus for Determination of Mechanical Properties of Functionally-Graded Materials. 1999. US Patent US5999887A.
  • Marple, B., and Boulanger, J. Slip Casting Process and Apparatus for Producing Graded Materials. 1996. US Patent US5498383A.
  • Yagi, W.; Yamada, M.; Ishii, M.; Makimura, Y.; Kurikuma, T., and Akita, N. 1994. Method for Producing Casting with Functional Gradient. US Patent US5316068A.
  • Kawasaki, A.; Watanabe, R. Concept and P/M Fabrication of Functionally Gradient Materials. Ceram. Int. 1997, 23(1), 73–83. DOI: 10.1016/0272-8842(95)00143-3.
  • Kawachi, S.; Nishibayashi, H.; Hirano, T.; Teraki, J., and Niino, M. Fluororesin/metal Base Functionally Gradient Material. 1991. US Patent US4997708A.
  • Niino, M.; Suzuki, A.; Hirai, T.; Watanabe, R.; Hirano, T., and Kuroishi, N. Method of Producing a Functionally Gradient Material. 1988. US Patent US4751099A.
  • Raharijaona, J. J.; Missiaen, J. M.; Mitteau, R.; Thomazic, A. Control of the Composition Profile of Tungsten-Copper Functionally Graded Materials for Fusion Technology Application. Mater. Sci. Forum. 2010, 279–284.
  • Singh, A. K.; Siddhartha. Development and Investigation on Transmission Efficiency of Functionally Graded Material-Based Polybutylene Terephthalate Spur Gears. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2020, 234(4), 473–489. DOI: 10.1177/1350650119886233.
  • Kieback, B.; Neubrand, A.; Riedel, H. Processing Techniques for Functionally Graded Materials. Mater. Sci. Eng. A. 2003, 362(1–2), 81–106. DOI: 10.1016/S0921-5093(03)00578-1.
  • Zhang, S.; Lu, W. F.; Fuh, J. Y. H. Electrohydrodynamic-Jetting (EHD-Jet) 3D-Printed Functionally Graded Scaffolds for Tissue Engineering Applications. J. Mater. Res. 2018, 33(14), 1–13. DOI: https://doi.org/10.1557/jmr.2018.159.
  • Gorscak, D.; Filetin, T.; Cackovic, D. Selection of Steels and Coatings for Cold-Work Tools. Mater. Manuf. Process. 2009, 24(7–8), 828–831. DOI: 10.1080/10426910902841779.
  • Sharma, S.; Rasool, H. I.; Palanisamy, V.; Mathisen, C.; Schmidt, M.; Wong, D. T.; Gimzewski, J. K. A Review Chemical Vapor Depositiob : Process and Application. ACS Nano, 2010, 4 (4), 1921–1926.
  • Lin, Q.; Chen, S.; Shen, B.; Sun, F. CVD Diamond Coated Drawing Dies: A Review. Mater. Manuf. Process. 2021, 36(4), 381–408. DOI: 10.1080/10426914.2020.1832689.
  • Cai, Z.; Liu, B.; Zou, X.; Cheng, H.-M. Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chem. Rev. 2018, 118(13), 6091–6133. DOI: https://doi.org/10.1021/acs.chemrev.7b00536.
  • Levashov, E. A.; Larikhin, D. V.; Shtansky, D. V.; Rogachev, A. S.; Grigoryan, H. E.; Moore, J. J. Self-Propagating High-Temperature Synthesis of Functionally Graded PVD Targets with a Ceramic Working Layer of TiB 2-TiN or Ti 5 Si 3-TiN. J. Mater. Synth. Proc. 2002, 10(6), 319–330. DOI: https://doi.org/10.1023/A:1023881718671.
  • Ayers, R.; Burkes, D.; Gottoli, G.; Yi, H. C.; Moore, J. J. The Application of Self-Propagating High-Temperature Synthesis of Engineered Porous Composite Biomedical Materials. Mater. Manuf. Process. 2007, 22(4), 481–488. DOI: 10.1080/10426910701235967.
  • Levashov, E. A.; Rogachev, A. S.; Ukhvid, V. I., and Borovinskaya, I. P. Physico-Chemical and Technological Bases of Self-Propagating High-Temperature Synthesis: Course of Lectures. 1991. Moscow: Moscow Steel and Alloys Institute.
  • Balamurugan, P.; Uthayakumar, M. Influence of Process Parameters on Cu-Fly Ash Composite by Powder Metallurgy Technique. Mater. Manuf. Process. 2015, 30(3), 313–319. DOI: 10.1080/10426914.2014.984220.
  • Mishra, S. K.; Pathak, L. C. Self-Propagating High-Temperature Synthesis (SHS) of Advanced High-Temperature Ceramics. Key Eng. Mater. 2009, 395, 15–38.
  • Liu, S.; Ye, F.; Liu, L.; Liu, Q.; Li, J. Preparation of Aluminum Nitride Ceramics by Aqueous Tape Casting. Mater. Manuf. Process. 2015, 30(5), 605–610. DOI: 10.1080/10426914.2014.973592.
  • Zygmuntowicz, J.; Gizowska, M.; Tomaszewska, J.; Piotrkiewicz, P.; Wachowski, M. Fabricated via Slip Casting. Mater. (Basel). 2021, 14, 1–16. DOI: 10.3390/ma14123365.
  • Takebe, H.; Morinaga, K. Fabrication of Zirconia-Nickel Functionally Gradient Materials by Slip Casting and Pressureless-Sintering. Mater. Manuf. Process. 2007, 9(4), 721–733. DOI: 10.1080/10426919408934942.
  • Chirita, G.; Stefanescu, I.; Barbosa, J.; Puga, H.; Soares, D.; Silva, F. S. On Assessment of Processing Variables in Vertical Centrifugal Casting Technique. Int. J. Cast Met. Res. 2009, 22(5), 382–389. DOI: 10.1179/174313309X380422.
  • Mondal, S. C.; Maiti, J.; Ray, P. K.; Shafiee, M. Modelling Process Robustness: A Case Study of Centrifugal Casting. Prod. Plan. Control. 2016, 27(3), 169–182. DOI: 10.1080/09537287.2015.1091112.
  • Masato, D.; Sorgato, M.; Lucchetta, G. Prototyping and Modeling of the Centrifugal Casting Process for Paraffin Waxes. Mater. Manuf. Process. 2017, 32(16), 1823–1830. DOI: 10.1080/10426914.2017.1317791.
  • Tay, Y. W. D.; Lim, J. H.; Li, M.; Tan, M. J. Creating Functionally Graded Concrete Materials with Varying 3D Printing Parameters. Virtual Phys. Prototyp. 2022, 0(0), 1–20. DOI: 10.1080/17452759.2022.2048521.
  • Uribe-Lam, E.; Treviño-Quintanilla, C. D.; Cuan-Urquizo, E.; Olvera-Silva, O. Use of Additive Manufacturing for the Fabrication of Cellular and Lattice Materials: A Review. Mater. Manuf. Process. 2021, 36(3), 257–280. DOI: 10.1080/10426914.2020.1819544.
  • Singh, N.; Singh, R.; Ahuja, I. P. S. On Development of Functionally Graded Material Through Fused Deposition Modelling Assisted Investment Casting from Al 2 O 3/sic Reinforced Waste Low Density Polyethylene. Trans. Indian Inst. Met. 2018, 71(10), 2479–2485. DOI: https://doi.org/10.1007/s12666-018-1378-9.
  • Krishna, A. V.; Faulcon, M.; Timmers, B.; Reddy, V. V.; Barth, H.; Nilsson, G.; Rosén, B. G. Influence of Different Post-Processing Methods on Surface Topography of Fused Deposition Modelling Samples. Surf. Topogr. Metrol. Prop. 2020, 8(1), 1–16. DOI: 10.1088/2051-672X/ab77d7/meta.
  • Kechagias, J.; Chaidas, D.; Vidakisb, N.; Salonitisc, K.; Vaxevanidis, N. M. Key Parameters Controlling Surface Quality and Dimensional Accuracy: A Critical Review of FFF Process. Mater. Manuf. Process. 2022, 1–22.
  • Chaidas, D.; Kechagias, J. D. An Investigation of PLA/W Parts Quality Fabricated by FFF. Mater. Manuf. Process. 2022, 37(5), 582–590. DOI: 10.1080/10426914.2021.1944193.
  • Gill, S. S.; Kaplas, M. Comparative Study of 3D Printing Technologies for Rapid Casting of Aluminium Alloy. Mater. Manuf. Process. 2009, 24(12), 1405–1411. DOI: 10.1080/10426910902997571.
  • Bouabbou, A.; Vaudreuil, S. Understanding Laser-Metal Interaction in Selective Laser Melting Additive Manufacturing Through Numerical Modelling and Simulation: A Review. Virtual Phys. Prototyp. 2022, 17(3), 543–562.
  • Cao, X.; Carter, L. N.; Villapún, V. M.; Cantaboni, F.; De Sio, G.; Lowther, M.; Louth, S. E. T.; Grover, L.; Ginestra, P.; Cox, S. C. Optimisation of Single Contour Strategy in Selective Laser Melting of Ti-6al-4V Lattices. Rapid Prototyp. J. 2022, 1–14. DOI: 10.1108/rpj-04-2021-0103.
  • Zhang, C.; Liu, Y.; Lu, J.; Xu, L.; Lin, Y.; Chen, P.; Sheng, Q.; Chen, F. Additive Manufacturing and Mechanical Properties of Martensite/austenite Functionally Graded Materials by Laser Engineered Net Shaping. J. Mater. Res. Technol. 2022, 17, 1570–1581. DOI: 10.1016/j.jmrt.2022.01.111.
  • Burkins, M.; Wells, M.; Fanning, J., and Roopchand, B.; The Mechanical and Ballistic Properties of an Electron Beam Single Melt of Ti-6Al-4V Plate. Virginia, United States: Army Research Laboratory, 2001.
  • Wang, R.-J.; Wang, L.; Zhao, L.; Liu, Z. Influence of Process Parameters on Part Shrinkage in SLS. Int. J. Adv. Manuf. Technol. 2007, 33(5–6), 498–504. DOI: https://doi.org/10.1007/s00170-006-0490-x.
  • Chua, C. K.; Leong, K. F., and Lim, C. S. Rapid Prototyping: Principles and Applications; Singapore: World Scientific Publishing Company, 2010.
  • Zhang, L.; Liu, Y.; Li, S.; Hao, Y. Additive Manufacturing of Titanium Alloys by Electron Beam Melting: A Review. Adv. Eng. Mater. 2018, 20(5), 1–90. DOI: https://doi.org/10.1002/adem.201700842.
  • Vastola, G.; Zhang, G.; Pei, Q. X.; Zhang, Y.-W. Modeling the Microstructure Evolution During Additive Manufacturing of Ti6al4v: A Comparison Between Electron Beam Melting and Selective Laser Melting. Jom. 2016, 68(5), 1370–1375. DOI: https://doi.org/10.1007/s11837-016-1890-5.
  • Izadi, M.; Farzaneh, A.; Mohammed, M.; Gibson, I.; Rolfe, B. A Review of Laser Engineered Net Shaping (LENS) Build and Process Parameters of Metallic Parts. Rapid Prototyp. J. 2020, 26(6), 1059–1078. DOI: https://doi.org/10.1108/RPJ-04-2018-0088.
  • Chen, X.; Kong, F.; Fu, Y.; Zhao, X.; Li, R.; Wang, G.; Zhang, H. A Review on Wire-Arc Additive Manufacturing: Typical Defects, Detection Approaches, and Multisensor Data Fusion-Based Model. Int. J. Adv. Manuf. Technol. 2021, 117(3–4), 707–727. DOI: 10.1007/s00170-021-07807-8.
  • Derekar, K. S. A Review of Wire Arc Additive Manufacturing and Advances in Wire Arc Additive Manufacturing of Aluminium. Mater. Sci. 2018, 34(8), 895–916. DOI: 10.1080/02670836.2018.1455012.
  • Sarathchandra, D. T.; Davidson, M. J.; Visvanathan, G. Parameters Effect on SS304 Beads Deposited by Wire Arc Additive Manufacturing. Mater. Manuf. Process. 2020, 35(7), 852–858. DOI: 10.1080/10426914.2020.1743852.
  • Hehr, A.; Norfolk, M. A Comprehensive Review of Ultrasonic Additive Manufacturing. Rapid Prototyp. J. 2019, 326(3), 445–458. DOI: https://doi.org/10.1108/RPJ-03-2019-0056.
  • Choi, K. H.; Kim, H.-S.; Park, C. H.; Kim, G.-H.; Baik, K. H.; Lee, S. H.; Kim, T.; Kim, H. S. High-Temperature Thermo-Mechanical Behavior of Functionally Graded Materials Produced by Plasma Sprayed Coating: Experimental and Modeling Results. Met. Mater. Int. 2016, 22(5), 817–824. DOI: https://doi.org/10.1007/s12540-016-6110-x.
  • Su, B.; Yan, H. G.; Chen, J. H.; Zeng, P. L.; Chen, G.; Chen, C. C. Wear and Friction Behavior of the Spray-Deposited SiCp/al-20si-3cu Functionally Graded Material. J. Mater. Eng. Perform. 2013, 22(5), 1355–1364. DOI: https://doi.org/10.1007/s11665-012-0409-7.
  • Chmielewski, M.; Pietrzak, K. Metal-Ceramic Functionally Graded Materials–manufacturing, Characterization, Application. Bull. Polish Acad. Sci. Tech. Sci. 2016, 64(1), 151–160. DOI: 10.1515/bpasts-2016-0017.
  • Cattini, A.; Bellucci, D.; Sola, A.; Pawłowski, L.; Cannillo, V. Microstructural Design of Functionally Graded Coatings Composed of Suspension Plasma Sprayed Hydroxyapatite and Bioactive Glass. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102(3), 551–560. DOI: 10.1002/jbm.b.33034.
  • Witvrouw, A.; Mehta, A. The Use of Functionally Graded Poly-SiGe Layers for MEMS Applications. In Materials Science Forum; Trans Tech Publ, 2005, Vol. 492; pp. 255–260.
  • Saleh, B.; Jiang, J.; Ma, A.; Song, D.; Yang, D. Effect of Main Parameters on the Mechanical and Wear Behaviour of Functionally Graded Materials by Centrifugal Casting: A Review. Met. Mater. Int. 2019, 25(6), 1395–1409. DOI: 10.1007/s12540-019-00273-8.
  • Fu, Q. X.; Tietz, F. Ceramic-Based Anode Materials for Improved Redox Cycling of Solid Oxide Fuel Cells. Fuel Cells. 2008, 8(5), 283–293. DOI: 10.1002/fuce.200800018.
  • Kannan, A. R.; Kumar, S. M.; Kumar, N. P.; Shanmugam, N. S.; Vishnu, A. S.; Palguna, Y. Process-Microstructural Features for Tailoring Fatigue Strength of Wire Arc Additive Manufactured Functionally Graded Material of SS904L and Hastelloy C-276. Mater. Lett. 2020, 274, 1–14. DOI: 10.1016/j.matlet.2020.127968.
  • Tokita, M. Large-Size-Wc/co Functionally Graded Materials Fabricated by Spark Plasma Sintering (SPS) Method. Mater. Sci. Forum. 2003, 423, 39–44.
  • Du, J.; Zhou, Z. J.; Song, S. X.; Zhong, Z. H., and Ge, C. C. Research on Mo/cu Functionally Graded Materials by Resistance Sintering Under Ultra-High Pressure. AIP Conference Proceedings. 2008, 973(1), 862–867. doi:10.1063/1.2896895.
  • Mirazimi, J.; Abachi, P.; Purazrang, K. Spark Plasma Sintering of Ultrafine YSZ Reinforced Cu Matrix Functionally Graded Composite. Acta Metall. Sin. 2016, 29(12), 1169–1176. DOI: https://doi.org/10.1007/s40195-016-0512-0.
  • Kumar, A.; Biswas, K.; Basu, B. Hydroxyapatite‐titanium Bulk Composites for Bone Tissue Engineering Applications. J. Biomed. Mater. Res. Part A. 2015, 103(2), 791–806. DOI: https://doi.org/10.1002/jbm.a.35198.
  • Konyashin, I.; Ries, B.; Lachmann, F.; Fry, A. T. A Novel Sintering Technique for Fabrication of Functionally Gradient Wc–co Cemented Carbides. J. Mater. Sci. 2012, 47(20), 7072–7084. DOI: 10.1007/s10853-012-6516-x.
  • Mao, C.; Ren, Y.; Gan, H.; Zhang, M.; Zhang, J.; Tang, K. Microstructure and Mechanical Properties of CBN-WC-Co Composites Used for Cutting Tools. Int. J. Adv. Manuf. Technol. 2015, 76(9–12), 2043–2049. DOI: 10.1007/s00170-014-6410-6.
  • Tsuda, K.; Ikegaya, A.; Isobe, K.; Kitagawa, N.; Nomura, T. Development of Functionally Graded Sintered Hard Materials. Powder Metall. 1996, 39(4), 296–300. DOI: https://doi.org/10.1179/pom.1996.39.4.296.
  • Luginina, M.; Angioni, D.; Montinaro, S.; Orrù, R.; Cao, G.; Sergi, R.; Bellucci, D.; Cannillo, V. Hydroxyapatite/bioactive Glass Functionally Graded Materials (FGM) for Bone Tissue Engineering. J. Eur. Ceram. Soc. 2020, 40(13), 4623–4634. DOI: 10.1016/j.jeurceramsoc.2020.05.061.
  • Watanabe, Y.; Iwasa, Y.; Sato, H.; Teramoto, A.; Abe, K.; Miura-Fujiwara, E. Microstructures and Mechanical Properties of Titanium/biodegradable-Polymer FGM for Bone Tissue Fabricated by Spark Plasma Sintering Method. J. Mater. Process. Technol. 2011, 211 (12), 1919–1926. 10.1016/j.jmatprotec.2011.05.024.
  • Bertolino, N.; Monagheddu, M.; Tacca, A.; Giuliani, P.; Zanotti, C.; Maglia, F.; Tamburini, U. A. Self-Propagating High-Temperature Synthesis of Functionally Graded Materials as Thermal Protection Systems for High-Temperature Applications. J. Mater. Res. 2003, 18(2), 448–455. DOI: 10.1557/JMR.2003.0057.
  • Arsha, A. G.; Jayakumar, E.; Rajan, T. P. D.; Antony, V.; Pai, B. C. Design and Fabrication of Functionally Graded in-Situ Aluminium Composites for Automotive Pistons. Mater. Des. 2015, 88, 1201–1209. DOI: 10.1016/j.matdes.2015.09.099.
  • Watanabe, Y.; Sato, R.; Kim, I.-S.; Miura, S.; Miura, H. Functionally Graded Material Fabricated by a Centrifugal Method from ZK60A Magnesium Alloy. Mater. Trans. 2005, 46(5), 944–949. DOI: https://doi.org/10.2320/matertrans.46.944.
  • Ebhota, W. S.; Karun, A. S.; Inambao, F. L. Investigation of Functionally Graded Aluminium A356 Alloy and A356-10% SiCp Composite for Hydro Turbine Bucket Application. Int. J. Eng. Res. Africa. 2016, 26, 30–46.
  • Shah, A. T.; Zahid, S.; Ikram, F.; Maqbool, M.; Chaudhry, A. A.; Rahim, M. I.; Schmidt, F.; Goerke, O.; Khan, A. S.; Ur Rehman, I. Tri-Layered Functionally Graded Membrane for Potential Application in Periodontal Regeneration. Mater. Sci. Eng. C. 2019, 103, 1–7. DOI: https://doi.org/10.1016/j.msec.2019.109812.
  • Neirinck, B.; Mattheys, T.; Braem, A.; Fransaer, J.; Van der Biest, O.; Vleugels, J. Preparation of Titanium Foams by Slip Casting of Particle Stabilized Emulsions. Adv. Eng. Mater. 2009, 11(8), 633–636. DOI: 10.1002/adem.200900074. Preparation.
  • Singh, A. K.; Vashishtha, S. Mechanical and Tribological Peculiarity of Nano‐tio2‐augmented, Polyester‐based Homogeneous Nanocomposites and Their Functionally Graded Materials. Adv. Polym. Technol. 2018, 37(3), 679–696. DOI: 10.1002/adv.21710.
  • Siddhartha; Singh, A. K. Mechanical and Dry Sliding Wear Characterization of Short Glass Fiber Reinforced Polyester-Based Homogeneous and Their Functionally Graded Composite Materials. Proc. Inst. Mech. Eng. Part L J Mater. Des. Appl. 2015, 229(4), 274–298. DOI: 10.1177/1464420713511429.
  • Liu, S.; Shen, Q.; Luo, G.; Li, M.; Zhang, L. Fabrication of W/cu FGM by Aqueous Tape Casting. In Journal of Physics, 2013; pp. 2–7. DOI: 10.1088/1742-6596/419/1/012018.
  • Vasconcelos, C. New Challenges in the Sintering of Ha/ZrO2 Composites. In Sintering of Ceramics - New Emerging Techniques; Lakshmanan, A., Ed.; Croatia: InTech, 2012; pp. 179–202.
  • Becker, B. S.; Bolton, J. D. Corrosion Behaviour and Mechanical Properties of Functionally Gradient Materials Developed for Possible Hard-Tissue Applications. J. Mater. Sci. Mater. Med. 1997, 8(12), 793–797. DOI: 10.1023/A:1018525015421.
  • Gooch, W. A.; Chen, B. H. C.; Burkins, M. S.; Palicka, R.; Rubin, J. J.; Ravichandran, R. Development and Ballistic Testing of a Functionally Gradient Ceramic/metal Applique. Mater. Sci. Forum. 1999, 308, 614–621.
  • Akmal, M.; Hussain, M. A.; Ikram, H.; Sattar, T.; Jameel, S.; Kim, J. Y.; Khalid, F. A., and Kim, J. W. , et al. In-Vitro Electrochemical and Bioactivity Evaluation of SS316L Reinforced Hydroxyapatite Functionally Graded Materials Fabricated for Biomedical Implants. Ceram. Int. 2016, 42(3), 3855–3863 doi:10.1016/j.ceramint.2015.11.050.
  • Feri, M.; Krommer, M.; Alibeigloo, A. Three-Dimensional Static Analysis of a Viscoelastic Rectangular Functionally Graded Material Plate Embedded Between Piezoelectric Sensor and Actuator Layers. Mech. Based Des. Struct. Mach. 2021, 0(0), 1–25. DOI: 10.1080/15397734.2021.1943673.
  • Leu, M. C.; Tang, L.; Deuser, B.; Landers, R. G.; Hilmas, G. E.; Zhang, S., and Watts, J. Freeze-Form Extrusion Fabrication of Composite Structures Proceedings of the 22nd Annual International Solid Freeform Fabrication Symposium Aug 2011 Austin, TX. 2011, (Austin: University of Texas), 111–124 doi:10.26153/tsw/15281.
  • Ataollahi, A.; Pramanik, S.; Mehrali, M. Mechanical and Physical Behavior of Newly Developed Functionally Graded Materials and Composites of Stainless Steel 316L with Calcium Silicate and Hydroxyapatite. J. Mech. Behav. Biomed. Mater. 2015, 49, 321–331. DOI: 10.1016/j.jmbbm.2015.05.020.
  • Chueh, Y.-H.; Zhang, X.; Wei, C.; Sun, Z.; Li, L. Additive Manufacturing of Polymer-Metal/ceramic Functionally Graded Composite Components via Multiple Material Laser Powder Bed Fusion. J. Manuf. Sci. Eng. 2020, 142(5), 1–15. DOI: https://doi.org/10.1115/1.4046594.
  • Long, T.; Zhang, X.; Huang, Q.; Liu, L.; Liu, Y.; Ren, J.; Yin, Y.; Wu, D.; Wu, H. Novel Mg-Based Alloys by Selective Laser Melting for Biomedical Applications: Microstructure Evolution, Microhardness and in vitro Degradation Behaviour. Virtual Phys. Prototyp. 2018, 13(2), 71–81. DOI: 10.1080/17452759.2017.1411662.
  • Liu, Y.; Weng, F.; Bi, G.; Chew, Y.; Liu, S.; Ma, G.; Moon, S. K. Characterization of Wear Properties of the Functionally Graded Material Deposited on Cast Iron by Laser-Aided Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2019, 105(10), 4097–4105. DOI: https://doi.org/10.1007/s00170-019-03414-w.
  • Carroll, B. E.; Otis, R. A.; Borgonia, J. P.; Suh, J.; Dillon, R. P.; Shapiro, A. A.; Hofmann, D. C.; Liu, Z.-K.; Beese, A. M. Functionally Graded Material of 304L Stainless Steel and Inconel 625 Fabricated by Directed Energy Deposition: Characterization and Thermodynamic Modeling. Acta Mater. 2016, 108, 46–54. DOI: https://doi.org/10.1016/j.actamat.2016.02.019.
  • Han, S.-W.; Ji, W.-J.; Moon, Y.-H. Fabrication of Gear Having Functionally Graded Properties by Direct Laser Melting Process. Adv. Mech. Eng. 2014, 1–6. DOI: https://doi.org/10.1155/2014/618464.
  • Yarrapareddy, E.; Zekovic, S.; Hamid, S.; Kovacevic, R. The Development of Nickel – Tungsten Carbide Functionally Graded Materials by a Laser-Based Direct Metal Deposition Process for Industrial Slurry Erosion Applications. 2016, 220, 1923–1936. DOI: 10.1243/09544054JEM578.
  • Beal, V. E.; Erasenthiran, P.; Ahrens, C. H.; Dickens, P. Evaluating the Use of Functionally Graded Materials Inserts Produced by Selective Laser Melting on the Injection Moulding of Plastics Parts. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2007, 221(6), 945–954. DOI: 10.1243/09544054JEM764.
  • Bandyopadhyay, A.; Krishna, B. V.; Xue, W.; Bose, S. Application of Laser Engineered Net Shaping (LENS) to Manufacture Porous and Functionally Graded Structures for Load Bearing Implants. J. Mater. Sci. Mater. Med. 2009, 20(S1), S29–S34. DOI: https://doi.org/10.1007/s10856-008-3478-2.
  • Articek, U.; Milfelner, M.; Anzel, I. Synthesis of Functionally Graded Material H13/cu by LENS Technology. Adv. Prod. Eng. Manag. 2013, 8(3), 169–176. DOI: http://dx.doi.org/10.14743/apem2013.3.164.
  • Durejko, T.; Ziętala, M.; Polkowski, W.; Czujko, T. Thin Wall Tubes with Fe3al/ss316l Graded Structure Obtained by Using Laser Engineered Net Shaping Technology. Mater. Des. 2014, 63, 766–774. DOI: https://doi.org/10.1016/j.matdes.2014.07.011.
  • Ding, D.; Pan, Z.; Van Duin, S.; Li, H.; Shen, C. Fabricating Superior NiAl Bronze Components Through Wire Arc Additive Manufacturing. Mater. (Basel). 2016, 9(8), 1–12. DOI: https://doi.org/10.3390/ma9080652.
  • Tari, M. J.; Bals, A.; Park, J.; Lin, M. Y.; Hahn, H. T. Rapid Prototyping of Composite Parts Using Resin Transfer Molding and Laminated Object Manufacturing. Compos. Part a Appl. Sci. Manuf. 1998, 29(5–6), 651–661. DOI: 10.1016/S1359-835X(97)00113-9.
  • Domack, M. S.; Baughman, J. M. Development of Nickel‐titanium Graded Composition Components. Rapid Prototyp. J. 2005, 655–668. DOI: 10.1108/13552540510573383.
  • Zhang, Y.; Yang, H.; Lei, S.; Zhu, S.; Wang, J.; Sun, Y.; Guan, S. Preparation of Biodegradable Mg/β-TCP Biofunctional Gradient Materials by Friction Stir Processing and Pulse Reverse Current Electrodeposition. Acta Metall. Sin. 2020, 33(1), 103–114. DOI: https://doi.org/10.1007/s40195-019-00956-6.
  • Put, S.; Vleugels, J.; der Biest, O. V. Microstructural Engineering of Functionally Graded Materials by Electrophoretic Deposition. J. Mater. Process. Technol. 2003, 143143-144, 572–577. DOI: 10.1016/S0924-0136(03)00370-4.
  • Fox, K. E.; Tran, N. L.; Nguyen, T. A.; Nguyen, T. T.; Tran, P. A. Surface Modification of Medical Devices at Nanoscale—recent Development and Translational Perspectives. In Biomaterials in Translational Medicine; Elsevier, 2019; pp. 163–189.
  • Zhang, K.; Yu, H.; Liu, J. J.; Li, Y.; Liu, J. J.; Zhang, J. Microstructure and Property of a Functionally Graded Aluminum Silicon Alloy Fabricated by Semi-Solid Backward Extrusion Process. Mater. Sci. Eng. A. 2015, 624, 229–238. DOI: 10.1016/j.msea.2014.11.044.
  • Wang, J.; Shaw, L. L. Fabrication of Functionally Graded Materials via Inkjet Color Printing. J. Am. Ceram. Soc. 2006, 89(10), 3285–3289. r.
  • Singh, A. K.; Siddhartha. A Novel Technique for In‐situ Manufacturing of Functionally Graded Materials Based Polymer Composite Spur Gears. Polym. Compos. 2019, 40(2), 523–535. DOI: https://doi.org/10.1002/pc.24682.
  • Kumar, S.; Reddy, K. M.; Kumar, A.; Devi, G. R. Development and Characterization of Polymer–ceramic Continuous Fiber Reinforced Functionally Graded Composites for Aerospace Application. Aerosp. Sci. Technol. 2013, 26(1), 185–191. DOI: https://doi.org/10.1016/j.ast.2012.04.002.
  • Ohtake, S.; Asaoka, T.; Furukawa, K.; Ushida, T.; Tateishi, T. Study on Bone Cell Adaptability of α-Tcp/hap Functionally Graded Porous Beads for Biomaterials Application. Adv. Sci. Technol. 2010, 76, 143–146.
  • Jedamzik, R.; Neubrand, A.; Rödel, J. Functionally Graded Materials by Electrochemical Processing and Infiltration: Application to Tungsten/copper Composites. J. Mater. Sci. 2000, 35(2), 477–486. DOI: https://doi.org/10.1023/A:1004735904984.
  • Erisken, C.; Kalyon, D. M.; Wang, H. Functionally Graded Electrospun Polycaprolactone and β-Tricalcium Phosphate Nanocomposites for Tissue Engineering Applications. Biomaterials. 2008, 29(30), 4065–4073.
  • Robitaille, F.; Yandouzi, M.; Hind, S.; Jodoin, B. Metallic Coating of Aerospace Carbon/epoxy Composites by the Pulsed Gas Dynamic Spraying Process. Surf. Coatings Technol. 2009, 203(19), 2954–2960. DOI: 10.1016/j.surfcoat.2009.03.011.
  • Li, N.; Tian, J. H.; Deng, W.; Sun, H. G. Application of Functionally Graded Materials for Solid Insulator: Fabrication, Optimization Design, and Surface Flashover of Prototype Samples. Appl. Mech. Mater. 2013, 291, 2308–2312.
  • Gardan, J. Smart Materials in Additive Manufacturing: State of the Art and Trends. Virtual Phys. Prototyp. 2019, 14(1), 1–18. DOI: 10.1080/17452759.2018.1518016.
  • Marinelli, G.; Martina, F.; Lewtas, H.; Hancock, D.; Ganguly, S.; Williams, S. Functionally Graded Structures of Refractory Metals by Wire Arc Additive Manufacturing. Sci. Technol. Weld. Join. 2019, 24(5), 495–503. DOI: 10.1080/13621718.2019.1586162.
  • Scheithauer, U.; Weingarten, S.; Johne, R.; Schwarzer, E.; Abel, J.; Richter, H. J.; Moritz, T.; Michaelis, A. Ceramic-Based 4D Components: Additive Manufacturing (AM) of Ceramic-Based Functionally Graded Materials (FGM) by Thermoplastic 3D Printing (T3DP). Mater. (Basel). 2017, 10(12), 1368. DOI: https://doi.org/10.3390/ma10121368.
  • Nohut, S.; Schwentenwein, M. Vat Photopolymerization Additive Manufacturing of Functionally Graded Materials: A Review. J. Manuf. Mater. Process. 2022, 6(1). DOI: 10.3390/jmmp6010017.
  • Wang, D.; Liu, L.; Deng, G.; Deng, C.; Bai, Y.; Yang, Y.; Wu, W.; Chen, J.; Liu, Y.; Wang, Y., et al. Recent Progress on Additive Manufacturing of Multi-Material Structures with Laser Powder Bed Fusion. Virtual Phys. Prototyp. 2022, 17(2), 329–365.
  • Ostolaza, M.; Arrizubieta, J. I.; Lamikiz, A.; Cortina, M. Functionally Graded AISI 316L and AISI H13 Manufactured by L-DED for Die and Mould Applications. Appl. Sci. 2021, 11(2), 1–11. DOI: 10.3390/app11020771.
  • Srivastava, M.; Rathee, S. Additive Manufacturing: Recent Trends, Applications and Future Outlooks. Prog. Addit. Manuf. 2021. DOI: https://doi.org/10.1007/s40964-021-00229-8.
  • Guo, N.; Leu, M. C. Additive Manufacturing: Technology, Applications and Research Needs. Front. Mech. Eng. 2013, 8(3), 215–243. DOI: 10.1007/s11465-013-0248-8.
  • Lakhdar, Y.; Tuck, C.; Binner, J.; Terry, A.; Goodridge, R. Additive Manufacturing of Advanced Ceramic Materials. Prog. Mater. Sci. 2021, 116, 1–50. DOI: 10.1016/j.pmatsci.2020.100736.
  • Goh, G. D.; Yap, Y. L.; Agarwala, S.; Yeong, W. Y. Recent Progress in Additive Manufacturing of Fiber Reinforced Polymer Composite. Adv. Mater. Technol. 2019, 4(1), 1–22. DOI: 10.1002/admt.201800271.
  • Quarto, M.; Carminati, M.; D’-Urso, G. Density and Shrinkage Evaluation of AISI 316L Parts Printed via FDM Process. Mater. Manuf. Process. 2021, 36(13), 1535–1543. DOI: 10.1080/10426914.2021.1905830.
  • Jeong, W.; Kwon, Y. S.; Kim, D. Three-Dimensional Printing of Tungsten Structures by Directed Energy Deposition. Mater. Manuf. Process. 2019, 34(9), 986–992. DOI: 10.1080/10426914.2019.1594253.
  • Wang, D.; Deng, G.; Yang, Y.; Chen, J.; Wu, W.; Wang, H.; Tan, C. Interface Microstructure and Mechanical Properties of Selective Laser Melted Multilayer Functionally Graded Materials. J. Cent. South Univ. 2021, 28(4), 1155–1169. DOI: 10.1007/s11771-021-4687-9.
  • Shen, C.; Pan, Z.; Cuiuri, D.; Roberts, J.; Li, H. Fabrication of Fe-FeAl Functionally Graded Material Using the Wire-Arc Additive Manufacturing Process. Metall. Mater. Trans. B. 2016, 47(1), 763–772. DOI: https://doi.org/10.1007/s11663-015-0509-5.
  • Rodrigues, T. A.; Bairrão, N.; Farias, F. W. C.; Shamsolhodaei, A.; Shen, J.; Zhou, N.; Maawad, E.; Schell, N.; Santos, T. G.; Oliveira, J. P. Steel-Copper Functionally Graded Material Produced by Twin-Wire and Arc Additive Manufacturing (T-WAAM). Mater. Des. 2022, 213(November), 110270. DOI: 10.1016/j.matdes.2021.110270.
  • Chandrasekaran, S.; Hari, S.; Amirthalingam, M. Wire Arc Additive Manufacturing of Functionally Graded Material for Marine Risers. Mater. Sci. Eng. A. 2020, 792, 1–16. DOI: https://doi.org/10.1016/j.msea.2020.139530.
  • Chandrasekaran S, Hari S and Amirthalingam M. (2022). Functionally graded materials for marine risers by additive manufacturing for high-temperature applications: Experimental investigations. Structures, 35 931–938. 10.1016/j.istruc.2021.12.004
  • Singh, S.; Sharma, S. K.; Rathod, D. W. A Review on Process Planning Strategies and Challenges of WAAM. Mater. Today Proc. 2020, 47(xxxx), 6564–6575. DOI: 10.1016/j.matpr.2021.02.632.
  • Rajeev, G. P.; Kamaraj, M.; Bakshi, S. R. Effect of Correction Parameters on Deposition Characteristics in Cold Metal Transfer Welding. Mater. Manuf. Process. 2019, 34(11), 1205–1216. DOI: 10.1080/10426914.2019.1628260.
  • Liu, G.; Xiong, J. External Filler Wire Based GMA-AM Process of 2219 Aluminum Alloy. Mater. Manuf. Process. 2020, 35(11), 1268–1277. DOI: 10.1080/10426914.2020.1779936.
  • Zhang, K.; Xiong, J.; Ke, Y. Effect of Latter Feeding Wire on Double-Wire GTA-AM Stainless Steel. Mater. Manuf. Process. 2021, 36(5), 608–617. DOI: 10.1080/10426914.2020.1843677.
  • Sharma, S. K.; Maheshwari, S. Arc Characterization Study for Submerged Arc Welding of HSLA (API X80) Steel. J. Mech. Sci. Technol. 2017, 31(3), 1383–1390. DOI: 10.1007/s12206-017-0238-6.
  • Sharma, S. K.; Maheshwari, S.; Singh, R. K. R. Modeling and Optimization of HAZ Characteristics for Submerged Arc Welded High Strength Pipeline Steel. Trans. Indian Inst. Met. 2019, 72(2), 439–454. DOI: 10.1007/s12666-018-1495-5.
  • Sharma, S. K.; Maheshwari, S.; Singh, R. K. R. Effect of Heat-Input and Cooling-Time on Bead Characteristics in SAW. Mater. Manuf. Process. 2019, 34(2), 208–215. DOI: 10.1080/10426914.2018.1532578.
  • Sharma, S. K.; Maheshwari, S. A Review on Welding of High Strength Oil and Gas Pipeline Steels. J. Nat. Gas. Sci. Eng. 2017, 38, 203–217. DOI: 10.1016/j.jngse.2016.12.039.
  • Vafadar, A.; Guzzomi, F.; Rassau, A.; Hayward, K. Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges. Appl. Sci. 2021, 11(3), 1–33. DOI: 10.3390/app11031213.
  • Wu, X.; Lian, Q.; Li, D.; Jin, Z. Biphasic Osteochondral Scaffold Fabrication Using Multi-Material Mask Projection Stereolithography. Rapid Prototyp. J. 2019, 25(2), 277–288. DOI: 10.1108/RPJ-07-2017-0144.
  • Pelz, J. S.; Ku, N.; Shoulders, W. T.; Meyers, M. A.; Vargas-Gonzalez, L. R. Multi-Material Additive Manufacturing of Functionally Graded Carbide Ceramics via Active, In-Line Mixing. Addit. Manuf. 2021, 37, 101647. DOI: 10.1016/j.addma.2020.101647.
  • Sahasrabudhe, H.; Bandyopadhyay, A. Additive Manufacturing of Reactive in situ Zr Based Ultra-High Temperature Ceramic Composites. Jom. 2016, 68(3), 822–830. DOI: 10.1007/s11837-015-1777-x.
  • Li, W., Armani, A.; Martin, A.; Kroehler, B.; Henderson, A.; Huang, T.; Watts, J.; Hilmas, G., and Leu, M. Extrusion-based Additive Manufacturing of Functionally Graded Ceramics J. Eur. Ceram. Soc. 41(3) , 2021, pp 2049–2057. doi:10.1016/j.jeurceramsoc.2020.10.029.
  • Zhu, W.; Yan, C.; Shi, Y.; Wen, S.; Liu, J.; Wei, Q.; Shi, Y. A Novel Method Based on Selective Laser Sintering for Preparing High-Performance Carbon Fibres/polyamide12/epoxy Ternary Composites. Sci. Rep. 2016, 6, 1–10. DOI: 10.1038/srep33780.
  • Mosleh, N.; Rezadoust, A. M.; Dariushi, S. Determining Process-Window for Manufacturing of Continuous Carbon Fiber-Reinforced Composite Using 3D-Printing. Mater. Manuf. Process. 2021, 36(4), 409–418. DOI: 10.1080/10426914.2020.1843664.
  • Kechagias, J. D.; Vidakis, N.; Petousis, M. Parameter Effects and Process Modeling of FFF-TPU Mechanical Response. Mater. Manuf. Process. 2021, 1–11. DOI: https://doi.org/10.1080/10426914.2021.2001523.
  • Vidakis, N.; Petousis, M.; Kechagias, J. D. Parameter Effects and Process Modelling of Polyamide 12 3D-Printed Parts Strength and Toughness. Mater. Manuf. Process. 2022, 1–12. DOI: https://doi.org/10.1080/10426914.2022.2030871.
  • Compton, B. G.; Lewis, J. A. 3d‐printing of Lightweight Cellular Composites. Adv. Mater. 2014, 26(34), 5930–5935.
  • Matsuzaki, R.; Ueda, M.; Namiki, M.; Jeong, T. K.; Asahara, H.; Horiguchi, K.; Nakamura, T.; Todoroki, A.; Hirano, Y. Three-Dimensional Printing of Continuous-Fiber Composites by In-Nozzle Impregnation. Sci. Rep. 2016, 6(1), 1–7. DOI: https://doi.org/10.1038/srep23058.
  • Parandoush, P.; Tucker, L.; Zhou, C.; Lin, D. Laser Assisted Additive Manufacturing of Continuous Fiber Reinforced Thermoplastic Composites. Mater. Des. 2017, 131(June), 186–195. DOI: 10.1016/j.matdes.2017.06.013.
  • Adeniran, O.; Cong, W.; Bediako, E.; Aladesanmi, V. Additive Manufacturing of Carbon Fiber Reinforced Plastic Composites: The Effect of Fiber Content on Compressive Properties. J. Compos. Sci. 2021, 5(12), 1–14. DOI: 10.3390/jcs5120325.
  • Gurr, M.; Hofmann, D.; Ehm, M.; Thomann, Y.; Kubier, R.; Mülhaupt, R. Acrylic Nanocomposite Resins for Use in Stereolithography and Structural Light Modulation Based Rapid Prototyping and Rapid Manufacturing Technologies. Adv. Funct. Mater. 2008, 18(16), 2390–2397. DOI: 10.1002/adfm.200800344.
  • Chiu, S. H.; Ivan, I.; Wu, C. L.; Chen, K. T.; Wicaksono, S. T.; Takagi, H. Mechanical Properties of Urethane Diacrylate/bamboo Powder Composite Fabricated by Rapid Prototyping System. Rapid Prototyp. J. 2016, 22(4), 676–683. DOI: 10.1108/RPJ-08-2014-0097.
  • Lu, Z. L.; Lu, F.; Cao, J. W.; Li, D. C. Manufacturing Properties of Turbine Blades of Carbon Fiber-Reinforced SiC Composite Based on Stereolithography. Mater. Manuf. Process. 2014, 29(2), 201–209. DOI: 10.1080/10426914.2013.872269.
  • Yang, C.; Tian, X.; Liu, T.; Cao, Y.; Li, D. 3D Printing for Continuous Fiber Reinforced Thermoplastic Composites: Mechanism and Performance. Rapid Prototyp. J. 2017, 23(1), 209–215. DOI: 10.1108/RPJ-08-2015-0098.
  • Gupta, A.; Ogale, A. A. Dual Curing of Carbon Fiber Reinforced Photoresins for Rapid Prototyping. Polym. Compos. 2002, 23(6), 1162–1170. DOI: 10.1002/pc.10509.
  • Charan, M. S.; Naik, A. K.; Kota, N.; Laha, T.; Roy, S. Review on Developments of Bulk Functionally Graded Composite Materials. Int. Mater. Rev. 2022. DOI: 10.1080/09506608.2022.2026863.
  • Hassan, N. M.; Antar, M.; Saleem, N.; Aboukhelil, S.; Ghonim, L. Effect of Synthesis Procedure on Particle Dispersion and Hardness of Al- Sic Functionally Graded Metal Matrix Composite. J. Eng. Mater. Technol. 2021, 144(April), 1–26. DOI: 10.1115/1.4052631.
  • Gabbrielli, R.; Turner, I. G.; Bowen, C. R. Development of Modelling Methods for Materials to Be Used as Bone Substitutes. Key Eng. Mater. 2008, 361, 903–906.
  • Jamian, S., Watanabe, Y., Sato, H. ; Japan. Nagoya Institute of Technology, 2012. Application of Functionally Graded Materials for Severe Plastic Deformation and Smart Materials - Experimental Study and Finite Element Analysis. https://core.ac.uk/download/pdf/12007641.pdf
  • Liu, L. S.; Zhang, Q. J.; Zhai, P. C. The Optimization Design on Metal/ceramic FGM Armor with Neural Net and Conjugate Gradient Method. Mater. Sci. Forum. 2003, 423– 425, 791–796.
  • Bhavar, V.; Kattire, P.; Thakare, S.; Patil, S., and Singh, R. K. P.; . In IOP Conf. Ser.: Mater. Sci. Eng. 229 , 2017 A Review on Functionally Gradient Materials (FGMs) and Their Applications ; pp. 012021 doi:10.1088/1757-899X/229/1/012021.
  • Gupta, B. Few Studies on Biomedical Applications of Functionally Graded Material. Int. J. Eng. Technol. Sci. Res. 2017, 4(3), 39–43.
  • Kumar S, Murthy Reddy K, Kumar A and Rohini Devi G. (2013). Development and characterization of polymer–ceramic continuous fiber reinforced functionally graded composites for aerospace application. Aerospace Science and Technology, 26(1), 185–191. 10.1016/j.ast.2012.04.002
  • Mee, M. CVD Diamond Coating: New Innovative Process Improves the Adhesion of Diamond to Cemented Carbide https://www.innovations-report.com/materials-sciences (accessed Apr 30, 2022).
  • Gao Y, Xiao W and Zhu H. (2019). Free vibration analysis of nano-tubes consisted of functionally graded bi-semi-tubes by a two-steps perturbation method. Lat. Am. j. solids struct., 16(1), 10.1590/1679-78255156
  • Xiong, Y.; Gao, R.; Zhang, H.; Dong, L.; Li, J.; Li, X. Rationally Designed Functionally Graded Porous Ti6al4v Scaffolds with High Strength and Toughness Built via Selective Laser Melting for Load-Bearing Orthopedic Applications. J. Mech. Behav. Biomed. Mater. 2020, 104, 1–12. DOI: 10.1016/j.jmbbm.2020.103673.
  • Hedayati, H.; Hedayati, M.; Aragh, B. S.; Farahani, E. B. Two-Dimensional Differential Quadrature Solution for Vibration Characteristics of Two-Dimensional Functionally Graded Metal/ceramic Open Cylindrical Shells. Mech. Adv. Mater. Struct. 2014, 21(4), 305–320. DOI: 10.1080/15376494.2012.680676.
  • Huang, C.-Y.; Chen, Y.-L. Effect of Mechanical Properties on the Ballistic Resistance Capability of Al2o3-ZrO2 Functionally Graded Materials. Ceram. Int. 2016, 42(11), 1–9.
  • Ker, D. F. E.; Wang, D.; Behn, A. W.; Wang, E. T. H.; Zhang, X.; Zhou, B. Y.; Mercado-Pagán, Á. E.; Kim, S.; Kleimeyer, J.; Gharaibeh, B., et al. Functionally Graded, Bone and Tendon Like Polyurethane for Rotator Cuff Repair. Adv. Funct. Mater. 2018, 28, 1–16. DOI: https://doi.org/10.1002/adfm.201707107.
  • Sudarmadji, N.; Tan, J. Y.; Leong, K. F.; Chua, C. K.; Loh, Y. T. Investigation of the Mechanical Properties and Porosity Relationships in Selective Laser-Sintered Polyhedral for Functionally Graded Scaffolds. Acta. Biomater. 2011, 7(2), 530–537. DOI: https://doi.org/10.1016/j.actbio.2010.09.024.
  • Ramanujan, R. V. Phase Transformations in γ Based Titanium Aluminides. Int. Mater. Rev. 2000, 45(6), 217–240. DOI: https://doi.org/10.1179/095066000101528377.
  • Czubarow, P.; Seyferth, D. Application of Poly (Methylsilane) and Nicalon® Polycarbosilane Precursors as Binders for Metal/ceramic Powders in Preparation of Functionally Graded Materials. J. Mater. Sci. 1997, 32(8), 2121–2130. DOI: https://doi.org/10.1023/A:1018583024199.
  • Watanabe, Y.; Sugiura, T.; Sato, H.; Tsuge, H. Fabrication of Al-Based Composites by Centrifugal Mixed-Powder Method and Their Application for Grinding Wheels. J. Mater. Eng. Perform. 2019, 28(7), 3852–3863. DOI: https://doi.org/10.1007/s11665-019-03917-3. ÓASM.
  • Hofmann, D. C.; Kolodziejska, J.; Roberts, S.; Otis, R.; Dillon, R. P.; Suh, J.-O.; Liu, Z.-K.; Borgonia, J.-P. Compositionally Graded Metals: A New Frontier of Additive Manufacturing. J. Mater. Res. 2014, 29(17), 1899–1910.
  • Lee, W. Y.; Stinton, D. P.; Berndt, C. C.; Erdogan, F.; Lee, Y.; Mutasim, Z. Concept of Functionally Graded Materials for Advanced Thermal Barrier Coating Applications. J. Am. Ceram. Soc. 1996, 79(12), 3003–3012. DOI: https://doi.org/10.1111/j.1151-2916.1996.tb08070.x.
  • Basu, S. N.; Kulkarni, T.; Wang, H. Z.; Sarin, V. K. Functionally Graded Chemical Vapor Deposited Mullite Environmental Barrier Coatings for Si-Based Ceramics. J. Eur. Ceram. Soc. 2008, 28(2), 437–445. DOI: 10.1016/j.jeurceramsoc.2007.03.007.
  • Gooch, W. A.; Chen, B. H. C.; Burkins, M. S.; Palicka, R.; Rubin, J. J.; Ravichandran, R. Development and Ballistic Testing of a Functionally Gradient Ceramic/metal Applique. Mater. Sci. Forum. 1999, 308, 614–621.
  • Petrovic, J. J.; McClellan, K. J. Ceramic/polymer Functionally Graded Material (FGM) Lightweight Armor System; Los Alamos National Lab.: NM (United States), 1998.
  • Perrella, G.; Faiella, D.; Brandonisio, G.; Fraldi, M.; Mele, E. Design of Functionally Graded Beam of Aluminium Foam for Civil Structural Application. Key Eng. Mater. 2016, 710, 65–70.
  • Zhou, H.; Wu, C.; Yan Tang, D.; Shi, X.; Xue, Y.; Huang, Q.; Zhang, J.; Elsheikh, A. H.; Ibrahim, A. M. M. Tribological Performance of Gradient Ag-Multilayer Graphene/tc4 Alloy Self-Lubricating Composites Prepared by Laser Additive Manufacturing. Tribol. Trans. 2021, 64(5), 819–829. DOI: 10.1080/10402004.2021.1922789.
  • Chen, F. L.; He, X.; Yin, H. M. Manufacture and Multi-Physical Characterization of Aluminum/high-Density Polyethylene Functionally Graded Materials for Green Energy Building Envelope Applications. Energy Build. 2016, 116, 307–317. DOI: https://doi.org/10.1016/j.enbuild.2015.11.001.
  • Jin, M.; Dong, X.; Wang, L.; Zhu, D.; Kang, J. Design and Mechanical Properties of Particle-Reinforced Polymer-Matrix Functionally Graded Materials Applied on Elastic Polishing Pad. Ceram. Int. 2020, 46(2), 1680–1689. DOI: 10.1016/j.ceramint.2019.09.140.
  • Ma, T.; Dong, B. X.; Grocke, G. L.; Strzalka, J.; Patel, S. N. Leveraging Sequential Doping of Semiconducting Polymers to Enable Functionally Graded Materials for Organic Thermoelectrics. Macromolecules. 2020, 53(8), 2882–2892. DOI: https://doi.org/10.1021/acs.macromol.0c00402.
  • Wu, D.; Liang, X.; Li, Q.; Jiang, L. Laser Rapid Manufacturing of Stainless Steel 316l/inconel718 Functionally Graded Materials: Microstructure Evolution and Mechanical Properties. Int. J. Opt. 2010, 2010, 1–6.
  • Liu, S.; Shen, Q.; Luo, G.; Li, M., and Zhang, L. . In J. Phys.: Conf. Ser.; 2013, Fabrication of W/Cu FGM by Aqueous Tape Casting. Vol. 419, p. 012018. doi:10.1088/1742-6596/419/1/012018.
  • Raabe, D.; Tasan, C. C.; Olivetti, E. A. Strategies for Improving the Sustainability of Structural Metals. Nature. 2019, 575(7781), 64–74. DOI: 10.1038/s41586-019-1702-5.
  • Chen, Y., and Liou, F. Additive Manufacturing of Metal Functionally Graded Materials: A Review. In Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium. Aug. 13-15, (University of Texas)1215–1231. Texas, United States, 2018.
  • Mishina, H.; Inumaru, Y.; Kaitoku, K. Fabrication of ZrO2/aisi316l Functionally Graded Materials for Joint Prostheses. Mater. Sci. Eng. A. 2008, 475(1–2), 141–147. DOI: https://doi.org/10.1016/j.msea.2007.05.004.
  • Zhong, Z.; Zhang, B.; Jin, Y.; Zhang, H.; Wang, Y.; Ye, J.; Liu, Q.; Hou, Z.; Zhang, Z.; Ye, F. Design and Anti-Penetration Performance of TiB/ti System Functionally Graded Material Armor Fabricated by SPS Combined with Tape Casting. Ceram. Int. 2020, 46(18), 28244–28249.
  • Klomp, J. T.; de with, G. Strong Metal-Ceramic Joints. Mater. Manuf. Process. 1993, 8(2), 129–157. DOI: 10.1080/10426919308934822.
  • Hager, M. D.; Greil, P.; Leyens, C.; van der Zwaag, S.; Schubert, U. S. Self-Healing Materials. Adv. Mater. 2010, 5424–5430. DOI: https://doi.org/10.1002/adma.201003036.
  • Sotirchos, V. S. Functionally Graded Alumina/mullite Coatings for Protection of Silicon Carbide Ceramic Components from Corrosion; Federal Energy Technology Center Morgantown (US), 2001. DOi: https://doi.org/10.2172/786900.
  • Serra, M. F.; Conconi, M. S.; Gauna, M. R.; Suárez, G.; Aglietti, E. F.; Rendtorff, N. M. Mullite (3al 2 O 3 ·2sio 2) Ceramics Obtained by Reaction Sintering of Rice Husk Ash and Alumina, Phase Evolution, Sintering and Microstructure. J. Asian Ceram. Soc. 2016, 4(1), 61–67. DOI: 10.1016/j.jascer.2015.11.003.
  • Wilkowski, J.; Barlak, M.; Böttger, R.; Werner, Z.; Konarski, P.; Pisarek, M.; Wachowicz, J.; Von Borany, J.; Auriga, A. Effect of Nitrogen Ion Implantation on the Life Time of WC-Co Tools Used in Particleboard Milling. Wood Mater. Sci. Eng. 2021, 1–12. DOI: 10.1080/17480272.2021.1900391.
  • Ewais, E. M. M.; Besisa, D. H. A.; Zaki, Z. I. Influence of MgO Addition on the Properties of New Tailored FGZM/A Ceramics. Mater. Sci. Eng. A. 2013, 578, 197–206. DOI: https://doi.org/10.1016/j.msea.2013.04.053.
  • Bellucci, D.; Salvatori, R.; Cannio, M.; Luginina, M.; Orru, R.; Montinaro, S.; Anesi, A.; Chiarini, L.; Cao, G.; Cannillo, V. Bioglass and Bioceramic Composites Processed by Spark Plasma Sintering (SPS): Biological Evaluation versus SBF Test. Biomed. Glas. 2018, 4(1), 21–31. DOI: 10.1515/bglass-2018-0003.
  • Besisa, D. H. A.; Ewais, E. M. M. Advances in Functionally Graded Ceramics – Processing, Sintering Properties and Applications. Adv. Funct. Graded Mater. Struct. 2016, 1–32. DOI: 10.5772/62612.
  • Ragulya, A. V. Consolidation of Ceramic Nanopowders. Adv. Appl. Ceram. 2008, 107(3), 118–134. DOI: 10.1179/174367608X318844.
  • Yang, L.; Miyanaji, H.; Ram, D. J.; Zandinejad, A.; Zhang, S. Functionally Graded Ceramic Based Materials Using Additive Manufacturing: Review and Progress. In Additive Manufacturing and Strategic Technologies in Advanced Ceramics; Shimamura, K., Kirihara, S., Akedo, J., Ohji, T. Naito, M., Eds.; The American Ceramic Society, 2016; Vol. 258, pp. 43–55. DOI: 10.1002/9781119236016.ch5.
  • Ødegaard, K. S.; Torgersen, J.; Elverum, C. W. Structural and Biomedical Properties of Common Additively Manufactured Biomaterials: A Concise Review. Metals (Basel). 2020, 10(12), 1–23. DOI: 10.3390/met10121677.
  • Nabipour, M.; Akhoundi, B.; Saed, A. B. Manufacturing of Polymer/metal Composites by Fused Deposition Modeling Process with Polyethylene. J. Appl. Polym. Sci. 2020, 1–9. DOI: 10.1002/app.48717.
  • Tanaka, K.; Ogata, S.; Kobayashi, R.; Tamura, T.; Kitsunezuka, M.; Shinma, A. Enhanced Heat Transfer Through Filler-Polymer Interface by Surface-Coupling Agent in Heat-Dissipation Material: A Non-Equilibrium Molecular Dynamics Study. J. Appl. Phys. 2013, 114, 19. DOI: 10.1063/1.4831946.
  • Kovriga, V. V. Basic Problems in the Mechanics of Polymer Composites Part 2 of a Survey. Int. Polym. Sci. Technol. 2003, 30(7), 61–64. DOI: 10.1177/0307174x0303000715.
  • Savio, D.; Bagno, A. When the Total Hip Replacement Fails : A Review on the. Processes. 2022, 10, 1–17. DOI: 10.3390/pr10030612.
  • Dubey, A.; Jaiswal, S.; Lahiri, D. Promises of Functionally Graded Material in Bone Regeneration: Current Trends, Properties, and Challenges. ACS Publ. 2022, 8(3), 1021–1027. DOI: 10.1021/acsbiomaterials.1c01416.
  • De Wild, M.; Schumacher, R.; Mayer, K.; Schkommodau, E.; Thoma, D.; Bredell, M.; Gujer, A. K.; Grätz, K. W.; Weber, F. E. Bone Regeneration by the Osteoconductivity of Porous Titanium Implants Manufactured by Selective Laser Melting: A Histological and Micro Computed Tomography Study in the Rabbit. Tissue Eng. - Part A. 2013, 19(23–24), 2645–2654. DOI: 10.1089/ten.tea.2012.0753.
  • Yang, H.; Jia, B.; Zhang, Z.; Qu, X.; Li, G.; Lin, W.; Zhu, D.; Dai, K.; Zheng, Y. Alloying Design of Biodegradable Zinc as Promising Bone Implants for Load-Bearing Applications. Nat. Commun. 2020, 11(1), 1–16. DOI: 10.1038/s41467-019-14153-7.
  • Krishna, B. V.; Bose, S.; Bandyopadhyay, A. Low Stiffness Porous Ti Structures for Load-Bearing Implants. Acta. Biomater. 2007, 3(6), 997–1006. DOI: 10.1016/j.actbio.2007.03.008.
  • Hedia, H. S. Comparison of One-Dimensional and Two-Dimensional Functionally Graded Materials for the Backing Shell of the Cemented Acetabular Cup. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 74(2), 732–739. DOI: 10.1002/jbm.b.30258.
  • Ker, D. F. E.; Wang, D.; Behn, A. W.; Wang, E. T. H.; Zhang, X.; Zhou, B. Y.; Mercado‐pagán, Á. E.; Kim, S.; Kleimeyer, J.; Gharaibeh, B. Functionally Graded Bone‐and Tendon‐like Polyurethane for Rotator Cuff Repair. Adv. Funct. Mater. 2018, 28(20), 1–16.
  • Nturanabo, F.; Masu, L.; Kirabira, J. B. Novel Applications of Aluminium Metal Matrix Composites. In Aluminium Alloys and Composites, Cooke, K., Ed.; Intech Open, 2019; pp. 71–93. DOI :10.5772/intechopen.86225.
  • Madan, R.; Bhowmick, S. A Review on Application of FGM Fabricated Using Solid-State Processes. Adv. Mater. Process. Technol. 2020, 6(3), 608–619. DOI: 10.1080/2374068X.2020.1731153.
  • Uemura, S. The Activities of FGM on New Application. Mater. Sci. Forum. 2003, 423 425, 1–10.
  • Liu, Y.; Compson, C.; Liu, M. Nanostructured and Functionally Graded Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. J. Power Sources. 2004, 138(1–2), 194–198. DOI: 10.1016/j.jpowsour.2004.06.035.
  • Popovich, A. A. Additive Technologies as Breakthrough Solutions for Creating Advanced Functional Materials. Met. Sci. Heat Treat. 2020, 62(1), 18–24. DOI: https://doi.org/10.1007/s11041-020-00507-2.
  • Tang, S.; Wang, R.; Liu, P.; Niu, Q.; Yang, G.; Liu, W.; Liu, D. Preparation of WC-TiC-Ni3al-CaF2 Functionally Graded Self-Lubricating Tool Material by Microwave Sintering and Its Cutting Performance. High Temp. Mater. Process. 2020, 39(1), 45–53. DOI: https://doi.org/10.1515/htmp-2020-0004.
  • Prakash, C.; Singh, S. On the Characterization of Functionally Graded Biomaterial Primed Through a Novel Plaster Mold Casting Process. Mater. Sci. Eng. C. 2020, 110, 1–13. DOI: https://doi.org/10.1016/j.msec.2020.110654.
  • Wang, F.; Ma, Y.; Guo, Y.; Huang, W. Study on Thermally Induced Crack Propagation Behavior of Functionally Graded Materials Using a Modified Peridynamic Model. Adv. Mater. Sci. Eng. 2020, 1–17. DOI: https://doi.org/10.1155/2020/1317965.
  • Yarımpabuç, D. A Unified Approach to Hyperbolic Heat Conduction of the Semi-Infinite Functionally Graded Body with a Time-Dependent Laser Heat Source. Iran. J. Sci. Technol. - Trans. Mech. Eng. 2019, 43(4), 729–737. DOI: 10.1007/s40997-019-00312-0.
  • Xiujuan, Z., and Yangang, W. Research of Functionally Graded Materials Database. In Second International Workshop on Education Technology and Computer Science Wuhan, China; IEEE, 2010; pp 655–658 doi:10.1109/ETCS.2010.470.
  • Li, Y.; Feng, Z.; Hao, L.; Huang, L.; Xin, C.; Wang, Y.; Bilotti, E.; Essa, K.; Zhang, H.; Li, Z., et al. A Review on Functionally Graded Materials and Structures via Additive Manufacturing: From Multi-Scale Design to Versatile Functional Properties. Adv. Mater. Technol. 2020, 5, 6. DOI: 10.1002/admt.201900981.
  • Wassermann, B.; Korshunova, N.; Kollmannsberger, S.; Rank, E.; Elber, G. Finite Cell Method for Functionally Graded Materials Based on V-Models and Homogenized Microstructures. Adv. Model. Simul. Eng. Sci. 2020, 1–33. DOI: https://doi.org/10.1186/s40323-020-00182-1.
  • Herger, J. E.; Uzcategui, A. C.; Muralidharan, A.; Crespo-Cuevas, V.; Ferguson, V. L.; McLeod, R. R. Grayscale Digital Light Processing and Post-Treatment for the Fabrication of 3D-Printed Polymer Blends. Adv. Eng. Mater. 2022, 2101543.
  • Sugimori, Y.; Kusunoki, K.; Cho, F.; Uchikawa, S. Toyota Production System and Kanban System Materialization of Just-In-Time and Respect-For- Human System. Int. J. Prod. 2007, 7543(15:6), 553–564. DOI: 10.1080/00207547708943149.
  • Ahmed, Z. Y.; Bos, F. P.; van Brunschot, M.; Salet, T. A. M. On-Demand Additive Manufacturing of Functionally Graded Concrete. Virtual Phys. Prototyp. 2020, 15(2), 194–210. DOI: https://doi.org/10.1080/17452759.2019.1709009.
  • Chang, T. C.; Wysk, R. A. Integrating Cad and Cam Through Automated Process Planning. Int. J. Prod. Res. 1984, 22(5), 877–894. DOI: 10.1080/00207548408942506.
  • Moussa, M.; ElMaraghy, H. Multi-Period Additive/subtractive Product Platform Design and Inventory Management. Int. J. Prod. Res. 2022, 1–19.
  • Wu, B.; Qiu, Z.; Pan, Z.; Carpenter, K.; Wang, T.; Ding, D.; Van Duin, S.; Li, H. Enhanced Interface Strength in Steel-Nickel Bimetallic Component Fabricated Using Wire Arc Additive Manufacturing with Interweaving Deposition Strategy. J. Mater. Sci. Technol. 2020, 52, 226–234. DOI: https://doi.org/10.1016/j.jmst.2020.04.019.
  • Rosen, D. W. Research Supporting Principles for Design for Additive Manufacturing. Virtual Phys. Prototyp. 2014, 9(4), 225–232. DOI: 10.1080/17452759.2014.951530.
  • Kechagias, J. Investigation of LOM Process Quality Using Design of Experiments Approach. Rapid Prototyp. J. 2007, 13(5), 316–323. DOI: 10.1108/13552540710824823.
  • Wang, L.; Xue, J.; Wang, Q. Correlation Between Arc Mode, Microstructure, and Mechanical Properties During Wire Arc Additive Manufacturing of 316L Stainless Steel. Mater. Sci. Eng. A. 2019, 751, 183–190. https://doi.org/10.1016/j.msea.2019.02.078.
  • Omiyale, B. M.; Olugbade, T. O.; Abioye, T. E.; Farayibi, P. K. Wire Arc Additive Manufacturing of Aluminium Alloys for Aerospace and Automotive Applications: A Review. Mater. Sci. Technol. 2022, 38(7), 391–408.
  • Whangdee, P.; Saenrang, W.; Kashima, D. P. Effect of Fluoride and Hydroxyl Group on Bioactivity of the Anodized Films Prepared by Two-Step Anodization at Low Current Density. Surf. Interface Anal. 2022.
  • Sonoya, K.; Kitahara, S., and Tobe, S. Crack Property Due to Thermal Stress for ZrO2-NiCrAlY Plasma Sprayed Layer. Journal of The Surface Finishing Society of Japan. 49. 1998, 1100–1104. doi:10.4139/sfj.49.1100.
  • Srivastava, M.; Rathee. S.; Maheshwari, S.; Siddiquee. A.N.; Investigation on Underwater FSP of Al-Mg-Si Alloy Surface Composites. Mater. Res. Express., 2019, 6, 1-12.Mater. Res. DOI: https://doi.org/10.1088/2053-1591/aaebe9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.