268
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Effect of process parameters on performance of grooved hot rolling of SAE 4340 steel bars

& ORCID Icon
Pages 206-219 | Received 12 Apr 2022, Accepted 24 Apr 2022, Published online: 30 May 2022

References

  • Kumar, T. S. P.; Rath, S.; Bhaskar, U. A Framework for Adaptive Online Thickness Control at Plate Mill of Bhilai Steel Plant. Mater. Manuf. Process. 2010, 25(1–3), 118–124.
  • Gračnar, A.; Kovačič, M., and Brezočnik, M. Decreasing of Guides Changing with Pass DesignOptimization on Continuous Rolling Mill Using a Genetic Algorithm. Mater. Manuf. Process. 2020, 35(6), 663–667.
  • Stephens, R. I.; Randall, A. On-Line Adaptive Control in the Hot Rolling of Steel. Proc Iee.Control Theory Appl. 1997, 144(1), 15–24.
  • Lang, J. Paper for Special Issue on “Aspects of Ancient Metallurgy” Roman Iron and Steel: A Review. Mater. Manuf. Process. 2017, 32(7–8), 857–866.
  • Markulik, S.; Nagyova, A.; Turisova, R., Villinsky, T., Improving Quality in the Process of Hot Rolling of Steel Sheets. Appl. Sci. 2021, 11, 5451.
  • Pandre, S.; Morchhale, A.; Kotkunde, N.; Singh, S. K. Influence of Processing Temperature on Formability of Thin-Rolled DP590 Steel Sheet. Mater. Manuf. Process. 2020, 35(8), 901–909.
  • Mittal, P.; Mohanty, I.; Malik, A.; Mitra, K. Many-Objective Optimization of Hot-Rolling Process of Steel: A Hybrid Approach. Mater. Manuf. Process. 2020, 35(6), 668–676.
  • Zhang, H.; Yu, L.; Liu, T., Ni, H., Li, Y., Chen, Z., Yang, Y. Optimizing the Preheating Temperature of Hot Rolled Slab from the Perspective of the Oxidation Kinetic. J. Mat. Res. Tech. 2020, 9(6), 12501–12511.
  • Yao, S. J.; Liu, H. T.; Sun, L.; Cai, M. H. Combined Effects of High-Temperature Rolling and Ultrafast Cooling on Mechanical Properties of Low-Carbon Steel. Mater. Manuf. Process. 2016, 32(12), 1331–1335.
  • Nandan, R.; Rai, R.; Jayakanth, R.; Moitra, S.; Chakraborti, N. Regulating Crown and Flatness During Hot Rolling: A Multi Objective Optimization Study Using Genetic Algorithms. Mater. Manuf. Process. 2005, 20(3), 459–478.
  • Grajcar, A. Researches and Simulations in Steel Rolling. Metals. 2021, 11, 560.
  • Sung, J. U.; Na, D. H.; Lee, Y. A Study on Design Equation of Separating and Oval Roll Grooves in Rebar Manufacturing Process. Mater. Manuf. Process. 2014, 29(2), 100–106.
  • Barrios, J. A.; Cavazos, A.; Leduc, L.; Ramírez, J. Fuzzy and Fuzzy Grey-Box Modelling for Entry Temperature Prediction in a Hot Strip Mill. Mater. Manuf. Process. 2011, 26(1), 66–77.
  • Weidlich, F.; Braga, A. P.; da Silva Lima, L. G., Júnior, M.B., Souza, R.M. The Influence of Rolling Mill Process Parameters on Roll Thermal Fatigue. Int. J. Adv. Mfg. Tech. 2019, 102, 2159–2171.
  • Fan, S.; Deng, Y.; Zhang, Y.; Huang, X.; Zhang, X. Homogenization of 7050 Plates by a Novel Differential Temperature Rolling. Mater. Manuf. Process. 2018, 33(16), 1822–1829.
  • Stahlberg, U.; Soderbergand, J. O.; Wallero, A. Overlap at the Back and Front End in Slab Ingot Rolling. Int. J. Mech. Sci. 1981, 23, 243–252.
  • Sims, R. B. The Calculation of Roll Force and Torque in Hot Rolling Mills. Ins. Mech. Engs. 1954, 168, 191–200.
  • Kumar, S.; Hariharan, K.; Digavalli, R. Hybrid Optimization of Die Design in Constrained Groove Pressing. Mater. Manuf. Process. 2020, 35(6), 687–699.
  • Jin, Q.; Wang, W.; Yan, W.; Jiang, R. Spring Back and Forward Slip Compensation in Designing Roller Cavity Surfaces for Net-Shape Rolling Compressor Blades. Mater. Manuf. Process. 2017, 32(12), 1442–1449.
  • Nalawade, R. S.; Marje, V. R.; Balachandran, G., Balasubramanian, V. Effect of Pass Schedule and Groove Design on the Metal Deformation of 38mnvs6 in the Initial Passes of Hot Rolling. Sadhana. 2016, 41(1), 111–124.
  • Ragab, A. R.; Samy, S. N. Evaluation of Estimates of Roll Separating Force in Bar Rolling, Trans. Of the ASME. J. Mfg Sci. Eng. 2006, 128, 34–45.
  • Bitar, T. E.; Meligy, M. E.; Shenawy, E. Prediction of Roll Separating Force in a Roll Pass Design of Micro-Alloyed Steel Rods. WIT Trans. Built Env. 2014, 137, 67–79.
  • Rath, S. Computer Simulation of Hot Rolling of Flat Products. Soft. Engg. 2016, 4(6), 75–81.
  • Majumder, M. K.; More, P. R.; Chatterjee, S., Mandley, P.S., Pal, S.K. Roll Separating Force in Hot Rolling Under Grooved Rolls – a Finite Element Analysis and Experimental Validation. Ind. J. Eng. Mat. Sci. 2016, 23, 267–273.
  • Wang, X.; Chandrashekhara, K.; Rummel, S. A., Lekakh, S., Van Aken, D.C., O’Malley, R.J. Modeling of Mass Flow Behavior of Hot Rolled Low Alloy Steel Based on Combined Johnson-Cook and Zerilli-Armstrong Model. J. Mater. Sci. 2017, 52, 2800–2815.
  • Razani, N. A.; Dariani, B. M.; Soltanpour, M. Microstructure and Mechanical Property Improvement of X70 in Asymmetrical Thermo-Mechanical Rolling. Int. J. Adv. Mfg Tech. 2018, 97, 3981–3997.
  • Lim, H. B.; Yang, H. I., and Kim, C. W. Analysis of the Roll Hunting Force Due to Hardness in a Hot Rolling Process. J. Mech. Sci. And Tech. 2019, 33(8), 3783–3793.
  • Kwak, W. J.; Lee, J. H.; Hwang, S. M., and Kim, Y. H. A Precision On-Line Model for the Prediction of Roll Force and Roll Power in Hot-Strip Rolling. Met. Mat. Trans. 2002, 33(10), 3255–72.
  • Zhang, S. H.; Zhao, D. W.; Gao, C. R. The Calculation of Roll Torque and Roll Separating Force for Broadside Rolling by Stream Function Method. Int. J. Mech. Sci. 2012, 57, 74–78.
  • Bagheripoor, M.; Bisadi, H. An Investigation on the Roll Force and Torque Fluctuations During Hot Strip Rolling Process. Pro. Mfg. Res. 2014, 2(1), 128–141.
  • Stahlberg, U.; Goransson, A. Heavy Reductions by Means of ‘Non-Bite’ Rolling, Including Some Observations on Work Piece Shape. J. Mech. W. Tech. 1986, 12, 373–384.
  • Klosterman, L. E.; Richter, R. T.; Crowley, M. D., Maslanka, A. Method for Reducing Crop Losses During Ingot Rolling. US Patent No. 6453712 B1, 2002.
  • Moon, C.-H.; Lee, Y. An Approximate Model for Local Strain Variation Over Material Thickness and Its Applications to Thick Plate Rolling Process. ISIJ. Int. 2009, 49(3), 402–407. DOI: 10.2355/isijinternational.49.402.
  • Nalawade, R. S.; Mahadik, K. N.; Balasubramanian, V., Singh, R., Satish, V., Cheekatla, K., Date, P.P. A Novel Method to Reduce End Crop Loss in Rolled Bars. Steel. Tech. 2012, 6(4), 57–66.
  • Rentsch, R.; Prinz, C. Finite Element Analysis of the Hot Rolling Process on the Origins of in Homogeneities Related to Steel Bar Distortion. Mat.-Wiss. U.Werkstofftech. 2012, 43, 1–2.
  • Byon, S. M. Numerical and Experimental Approach to Investigate Plane-View Shape and Crop Loss in Multistage Plate Rolling. Kor. Soc Mech. Eng. 2013, 37(9), 1117–1125.
  • Li, X.; Wang, H.Y.; Ding, J.G., Xu, J.J., Zhang, D.H. Analysis and Prediction of Fishtail During V-H Hot Rolling Process. J. Cen. South Uni. 2015, 22, 1184–1190.
  • Nunes, M. M.; DaSilva, E. M.; Renzetti, R. A., Brito, T.G. Analysis of Quenching Parameters in AISI 4340 Steel by Using Design of Experiments. Mat. Res. 2019, 22(1), 1–6.
  • Navukkarasan, A.; Pradeep Kumar, M.; Chandrasekhara Sastry, C. Experimental Investigation of Dry and Cryogenic Broaching of AISI 4340 Steel. Mater. Manuf. Process. 2020, 35(14), 1584–1597.
  • Vijayaram, T. R. Metallurgy of Continuous Casting Technology. Int. J. Mfg. Ind. Eng. 2014, 1(1), 17–36.
  • Sarwito, S.; Semin Suherman, A. Analysis of Three Phases Asynchronous Slip Ring Motor Performance Feedback Type 243. Int. J. Mar. Eng. Inno. Res. 2017, 2, 1–7.
  • Wusatowski, Z. Fundamentals of Rolling, Elsevier, 2013; pp. 25–150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.