823
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Development and performance study of biomedical porous zinc scaffold manufactured by using additive manufacturing and microwave sintering

, &
Pages 1020-1032 | Received 11 Apr 2022, Accepted 30 May 2022, Published online: 21 Jun 2022

References

  • Ansari, M. Bone Tissue Regeneration: Biology, Strategies and Interface Studies. Prog. Biomater. 2019, 8(4), 223–237. DOI: 10.1007/s40204-019-00125-z.
  • Kim, T. G.; Shin, H.; Lim, D. W. Biomimetic Scaffolds for Tissue Engineering. Adv. Funct. Mater. 2012, 22(12), 2446–2468. DOI: 10.1002/adfm.201103083.
  • Gao, C.; Peng, S.; Feng, P.; Shuai, C. Bone Biomaterials and Interactions with Stem Cells. Bone Res. 2017, 5(May), 1–33. DOI: 10.1038/boneres.2017.59.
  • Detsch, R.; Will, J.; Hum, J.; Roether, J. A.; Boccaccini, A. R. Biomaterials. 91–105. 10.1007/978-3-319-74854-2.
  • Yadav, S.; Gangwar, S. An Overview on Recent Progresses and Future Perspective of Biomaterials. IOP Conf. Ser Mater. Sci. Eng. 2018, 404, 1. DOI: 10.1088/1757-899X/404/1/012013.
  • Festas, A. J.; Ramos, A.; Davim, J. P. Medical Devices Biomaterials – a Review. Proc. Inst. Mech. Eng. Part L J Mater. Des. Appl. 2020, 234(1), 218–228. DOI: 10.1177/1464420719882458.
  • Bazaka, O.; Bazaka, K.; Kingshott, P.; Crawford, R. J.; Ivanova, E. P. Chapter 1. Met. Implants Biomed. Appl. 2021. DOI: 10.1039/9781788019828-00001.
  • Ødegaard, K. S.; Torgersen, J.; Elverum, C. W. Structural and Biomedical Properties of Common Additively Manufactured Biomaterials: A Concise Review. Met (Basel). 2020, 10(12), 1–23. DOI: 10.3390/met10121677.
  • Hollister, S. J. Porous Scaffold Design for Tissue Engineering, Nat. Mater. 2006, 5(7), 590. DOI:10.1038/nmat1421.
  • Zivic, F.; Grujovic, N.; Pellicer, E.; Sort, J.; Mitrovic, S.; Adamovic, D.; Vulovic, M. Biodegradable Met. Biomater. Clin. Pract: Iron-Based Mater. 2017. DOI: 10.1007/978-3-319-68025-5_9.
  • Zhu, D.; Su, Y.; Young, M. L.; Ma, J.; Zheng, Y.; Tang, L. Biological Responses and Mechanisms of Human Bone Marrow Mesenchymal Stem Cells to Zn and Mg Biomaterials. ACS Appl. Mater. Interfaces. 2017, 9(33), 27453–27461. DOI: 10.1021/acsami.7b06654.
  • Oriňaková, R.; Gorejová, R.; Králová, Z. O.; Petráková, M.; Oriňak, A. Novel Trends and Recent Progress on Preparation Methods of Biodegradable Metallic Foams for Biomedicine: A Review. J. Mater. Sci. 2021, 56(25), 13925–13963. DOI: 10.1007/s10853-021-06163-y.
  • Zan, R.; Ji, W.; Qiao, S.; Wu, H.; Wang, W.; Ji, T.; Yang, B.; Zhang, S.; Luo, C.; Song, Y., et al. Biodegradable Magnesium Implants: A Potential Scaffold for Bone Tumor Patients. Sci. China Mater. 2021, 64(4), 1007–1020. DOI: 10.1007/s40843-020-1509-2.
  • Levy, G. K.; Goldman, J.; Aghion, E. The Prospects of Zinc as a Structural Material for Biodegradable Implants—a Review Paper. Metals (Basel). 2017, 7(10), 1–18. DOI: 10.3390/met7100402.
  • Cockerill, I.; Su, Y.; Sinha, S.; Qin, Y. X.; Zheng, Y.; Young, M. L.; Zhu, D. Porous Zinc Scaffolds for Bone Tissue Engineering Applications: A Novel Additive Manufacturing and Casting Approach. Mater. Sci. Eng. C. 2020, 110(February), 110738. DOI: 10.1016/j.msec.2020.110738.
  • Kambe, T.; Tsuji, T.; Hashimoto, A.; Itsumura, N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 2015, 95(3), 749–784. DOI: 10.1152/physrev.00035.2014.
  • Bowen, P. K.; Drelich, J.; Goldman, J. Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents. Adv. Mater. 2013, 25(18), 2577–2582. DOI: 10.1002/adma.201300226.
  • Roohani, N.; Hurrell, R.; Kelishadi, R., and Schulin, R. Zinc and Its Importance for Human Health: An Integrative Review. J. Res. Med. Sci. 2013, 18(2), 144–157. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724376/pdf/JRMS-18-144.pdf
  • Zhu, D.; Su, Y.; Zheng, Y.; Fu, B.; Tang, L.; Qin, Y. X. Zinc Regulates Vascular Endothelial Cell Activity Through Zinc-Sensing Receptor ZnR/gpr39. Am. J. Physiol. - Cell Physiol. 2018, 314(4), C404–C414. DOI: 10.1152/ajpcell.00279.2017.
  • Li, H. F.; Xie, X. H.; Zheng, Y. F.; Cong, Y.; Zhou, F. Y.; Qiu, K. J.; Wang, X.; Chen, S. H.; Huang, L.; Tian, L., et al. Development of Biodegradable Zn-1X Binary Alloys with Nutrient Alloying Elements Mg, Ca and Sr. Sci. Rep. 2015, 5, 1–13. DOI: 10.1038/srep10719.
  • Zhao, L.; Zhang, Z.; Song, Y.; Liu, S.; Qi, Y.; Wang, X.; Wang, Q.; Cui, C. Mechanical Properties and in vitro Biodegradation of Newly Developed Porous Zn Scaffolds for Biomedical Applications. Mater. Des. 2016, 108, 136–144. DOI: 10.1016/j.matdes.2016.06.080.
  • Čapek, J.; Jablonská, E.; Lipov, J.; Kubatík, T. F.; Vojtěch, D. Preparation and Characterization of Porous Zinc Prepared by Spark Plasma Sintering as a Material for Biodegradable Scaffolds. Mater. Chem. Phys. 2018, 203, 249–258. DOI: 10.1016/j.matchemphys.2017.10.008.
  • Li, Y.; Pavanram, P.; Zhou, J.; Lietaert, K.; Bobbert, F. S. L.; Kubo, Y.; Leeflang, M. A.; Jahr, H.; Zadpoor, A. A. Additively Manufactured Functionally Graded Biodegradable Porous Zinc. Biomater. Sci. 2020, 8(9), 2404–2419. DOI: 10.1039/c9bm01904a.
  • Wen, P.; Jauer, L.; Voshage, M.; Chen, Y.; Poprawe, R.; Schleifenbaum, J. H. Densification Behavior of Pure Zn Metal Parts Produced by Selective Laser Melting for Manufacturing Biodegradable Implants. J. Mater. Process. Technol. 2018, 258(2010), 128–137. DOI: 10.1016/j.jmatprotec.2018.03.007.
  • Karunakaran, K. P.; Bernard, A.; Suryakumar, S.; Dembinski, L.; Taillandier, G. Rapid Manufacturing of Metallic Objects. Rapid Prototyp. J. 2012, 18(4), 264–280. DOI: 10.1108/13552541211231644.
  • Chua, C. K.; Hong, K. H.; Ho, S. L. Rapid Tooling Technology. Part 1. A Comparative Study. Int. J. Adv. Manuf. Technol. 1999, 15(8), 604–608. DOI: 10.1007/s001700050108.
  • Sharma, P.; Pandey, P. M. Rapid Manufacturing of Biodegradable Pure Iron Scaffold Using Amalgamation of Three-Dimensional Printing and Pressureless Microwave Sintering. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233(6), 1876–1895. DOI: 10.1177/0954406218778304.
  • Srinath, M. S.; Sharma, A. K.; Kumar, P. A Novel Route for Joining of Austenitic Stainless Steel (SS-316) Using Microwave Energy. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2011, 225(7), 1083–1091. DOI: 10.1177/2041297510393451.
  • Technology, I.; Materials, N.; Board, A.; Engineering, C. O. N., and Systems, T. Microwave Processing of Material: An Emerging Industrial Technology National Materials Advisory Borad Commission on Engineering and Technical Systems (Washington D.C.: National Academy Press), 1994.
  • Singh, S.; Gupta, D.; Jain, V.; Sharma, A. K. Microwave Processing of Materials and Applications in Manufacturing Industries: A Review. Mater. Manuf. Process. 2015, 30(1), 1–29. DOI: 10.1080/10426914.2014.952028.
  • Annamalai, R.; Upadhyaya, A.; Agrawal, D. An Investigation on Microwave Sintering of Fe, Fe-Cu and Fe-Cu-C Alloys. Bull. Mater. Sci. 2013, 36(3), 447–456. DOI: 10.1007/s12034-013-0477-9.
  • Sadighikia, S.; Abdolhosseinzadeh, S.; Asgharzadeh, H. Production of High Porosity Zn Foams by Powder Metallurgy Method. Powder Metall. 2015, 58(1), 61–66. DOI: 10.1179/1743290114Y.0000000109.
  • Vats, A.; Dvivedi, A.; Kumar, P. Investigation of Hole Roundness-Error Using Different Electrolytes in STED Process. Mater. Manuf. Process. 2021, 00(00), 1–17. DOI: 10.1080/10426914.2021.2016811.
  • Tiwari, T.; Dvivedi, A.; Kumar, P. Investigations on the Fabrication of a Patterned Tool by Chemical Etching. Mater. Manuf. Process. 2021, 36(16), 1840–1852. DOI: 10.1080/10426914.2021.1926491.
  • Montgomery, D.C.Design and analysis of experiments. 2017, (Jhon wiley & sons).
  • Xiong, Y.; Yang, A.; Guo, Y.; Liu, W.; Liu, L. Effect of Fine-Grained Structure on the Mechanical Properties of Superalloys K3 and K4169. Sci. Technol. Adv. Mater. 2001, 2(1), 7–11. DOI: 10.1016/S1468-6996(01)00018-3.
  • Beere, W. The Sintering and Morphology of Interconnected Porosity in U02 Powder Compacts. J. Mater. Sci. 1973, 8, 1717–1724. DOI:10.1007/BF02403522.
  • Randall, M. G. Sintering Theory of Practice; Wiley: New Jersey, 1996.
  • Du, A.; Yang, Y.; Qin, Y.; Yang, G. Effects of Heating Rate and Sintering Temperature on 316 L Stainless Steel Powders Sintered Under Multiphysical Field Coupling. Mater. Manuf. Process. 2013, 28(1), 66–71. DOI: 10.1080/10426914.2012.709349.
  • German, R. M. Powder Injection Molding;Metal Powder Industries Federation: New York, 1990.
  • Carter, D. R., and Wilson C.Hayes. The Compressive Behavior of Bone as a Two-Phase Porous Structure. J. Bone J. Surg. 1977, 59(7), 954–962. DOI:10.1007/978-1-4471-5451-8_116.
  • Pace, A.; Valenza, A., and Vitale, A. Mechanical characterization of human cancellous bone tissue by static compression test. In Mater. Biocompat. Per La Med. First; Maantova,Italy: Universitas StudiorumS. rl. 15–8, 2014. DOI:10.1007/978-1-4471-5451-8_116.
  • Wu, H.; Xie, X.; Wang, J.; Ke, G.; Huang, H.; Liao, Y.; Kong, Q. Biological Properties of Zn–0.04mg–2ag: A New Degradable Zinc Alloy Scaffold for Repairing Large-Scale Bone Defects. J. Mater. Res. Technol. 2021, 13, 1779–1789. DOI: 10.1016/j.jmrt.2021.05.096.
  • Hou, Y.; Jia, G.; Yue, R.; Chen, C.; Pei, J.; Zhang, H.; Huang, H.; Xiong, M.; Yuan, G. Synthesis of Biodegradable Zn-Based Scaffolds Using NaCl Templates: Relationship between Porosity, Compressive Properties and Degradation Behavior. Elsevier Inc. 2018; Vol. 137. 10.1016/j.matchar.2018.01.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.