154
Views
1
CrossRef citations to date
0
Altmetric
Research Article

AI-guided optimization of manufacturing protocols for AHSS coils

ORCID Icon, &
Pages 151-158 | Received 07 Feb 2022, Accepted 23 Jun 2022, Published online: 02 Aug 2022

References

  • Keeler, S., and Kimchi, M. Advanced High-Strength Steels Application Guidelines Version 6.0. WorldAutosteel http://www.worldautosteel.org/ Accessed on 26 December 2021. 2020.
  • Senuma, T. Processing and Properties of Advanced High Strength Steel Sheets. Can. Metall. Q. 2013, 43(1), 1–12. DOI: 10.1179/CMQ.2004.43.1.1.
  • Matlock, D. K.; Speer, J. G. Processing Opportunities for New Advanced High-Strength Sheet Steels. Mater. Manuf. Process. 2010, 25(1–3), 7–13. DOI: 10.1080/10426910903158272.
  • Wu, G. L.; Liu, X. B.; Zhou, C. Y. Effects of Rolling and Cooling Process on Mechanical Properties and Microstructure of 600 MPa Microalloyed Dual-Phase Steel Produced by Compact Strip Production. J. South Afr. Inst. Min. Metall. 2016, 116(1). DOI: 10.17159/2411-9717/2016/v116n1a8.
  • Mazur, V. L.; Timoshenko, V. I.; Prikhodko, I. Y. Efficient Cold Rolling and Coiling Modes. Steel Transl. 2019, 49(8), 548–558. DOI: 10.3103/S0967091219080102.
  • Srivastava, A. K.; Jha, G.; Gope, N.; Singh, S. B. Effect of Heat Treatment on Microstructure and Mechanical Properties of Cold Rolled C–Mn–Si TRIP-Aided Steel. Mater. Charact. 2006, 57(2), 127–135. DOI: 10.1016/J.MATCHAR.2006.01.010.
  • Kim, H. L.; Bang, S. H.; Choi, J. M.; Tak, N. H.; Lee, S. W.; Park, S. H. Effect of Rolling and Coiling Temperatures on Microstructure and Mechanical Properties of Medium-Carbon Pipeline Steel. Met. Mater. Int. 2020, 26(12), 1757–1765. DOI: 10.1007/s12540-019-00500-2.
  • Sugimoto, K.; Sato, S.; Kobayashi, J.; Srivastava, A. K. Effects of Cr and Mo on Mechanical Properties of Hot-Forged Medium Carbon TRIP-Aided Bainitic Ferrite Steels. Metals. 2019, 9(10), 1066. DOI: 10.3390/MET9101066.
  • Lee, Y. K.; Han, J. Current Opinion in Medium Manganese Steel. Mater. Sci. Technol. 2015, 31(7), 843–856. DOI: 10.1179/1743284714Y.0000000722.
  • Kim, K. Effects of Microalloying and Hot Rolling Parameters on Toughness and Yield Strength of API X80 Grade Steel Strips. In Fundamentals and Applications of Mo and Nb Alloying in High Performance Steels CBMM, IMOA, and TMS 2014; Mohrbacher, H. (USA: CBMM, IMOA and TMS) Ed.; 2014; Vol. 1, pp 135–153.
  • Sun, M.; Xu, Y.; Du, W. Influence of Coiling Temperature on Microstructure, Precipitation Behaviors and Mechanical Properties of a Low Carbon Ti Micro-Alloyed Steel. Metals. 2020, 10(9), 1173. DOI: 10.3390/MET10091173.
  • Natarajan, V. V.; Challa, V. S. A.; Misra, R. D. K.; Sidorenko, D. M.; Mulholland, M. D.; Manohar, M.; Hartmann, J. E. The Determining Impact of Coiling Temperature on the Microstructure and Mechanical Properties of a Titanium-Niobium Ultrahigh Strength Microalloyed Steel: Competing Effects of Precipitation and Bainite. Mater. Sci. Eng. A. 2016, 665, 1–9. DOI: 10.1016/j.msea.2016.04.007.
  • Wang, Y.; Tang, Z.; Xiao, S.; Siyasiya, C. W.; Wei, T. Effects of Final Rolling Temperature and Coiling Temperature on Precipitates and Microstructure of High-Strength Low-Alloy Pipeline Steel. J. Iron Steel Res. Int. 2021, 1–9. DOI: 10.1007/S42243-021-00659-2.
  • Zhao, Y.; Huang, X.; Yu, B.; Yuan, X.; Liu, X. Effect of Coiling Temperature on Microstructure, Properties and Resistance to Fish-Scaling of Hot Rolled Enamel Steel. Materials. 2017, 10(9), 1012. DOI: 10.3390/MA10091012.
  • Jha, R.; Jha, B. K. Artificial Intelligence-Aided Materials Design: AI-Algorithms and Case Studies on Alloys and Metallurgical Processes, 1st ed; CRC Press: Boca Raton, FL, 2022. DOI:10.1201/9781003167372.
  • Gu, C. Smoothing Spline ANOVA Models; Springer- Verlag: New York, 2002. DOI: 10.1007/978-1-4614-5369-7.
  • Industry 4.0 and AHSS Applications - AHSS Guidelines. https://ahssinsights.org/forming/industry-4-0-and-ahss-applications/industry-4-0-and-ahss-applications/ (accessed Oct. 20, 2021).
  • Alfeld, P. Scattered Data Interpolation in Three or More Variables. In Mathematical Methods in Computer Aided Geometric Design Lyche, Tom, Schumaker, Larry L.; San Diego, CA, USA: Academic Press, 1989; pp 1–34.
  • Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6(2), 182–197. DOI: 10.1109/4235.996017.
  • Inselberg, A. Parallel Coordinates; Springer: New York, 2009; pp 1–50.
  • Jha, R.; Chakraborti, N.; Diercks, D. R.; Stebner, A. P.; Ciobanu, C. V. Combined Machine Learning and CALPHAD Approach for Discovering Processing-Structure Relationships in Soft Magnetic Alloys. Comput. Mater. Sci. 2018, 150, 202–211. DOI: 10.1016/J.COMMATSCI.2018.04.008.
  • Miriyala, S. S.; Mohanty, I.; Mitra, K. Performance Improvement in Hot Rolling Process with Novel Neural Architectural Search. In Machine Learning in Industry. Management and Industrial Engineering; Datta, S., Davim, J. P. Eds.; Springer: Cham, 2022. DOI: 10.1007/978-3-030-75847-9_9.
  • Mittal, P.; Mohanty, I.; Malik, A.; Mitra, K. Many-Objective Optimization of Hot-Rolling Process of Steel: A Hybrid Approach. Mater. Manuf. Process. 2020, 35(6), 668–676. DOI: 10.1080/10426914.2019.1655157.
  • Srivastava, A. K.; Patra, P. K.; Jha, R. AHSS Applications in Industry 4.0: Determination of Optimum Processing Parameters During Coiling Process Through Unsupervised Machine Learning Approach. Mater. Today Commun. 2022, 31, 103625. DOI: 10.1016/j.mtcomm.2022.103625.
  • Miriyala, S. S.; Mitra, K. Multi-Objective Optimization of Iron Ore Induration Process Using Optimal Neural Networks. Mater. Manuf. Process. 2020, 35(5), 537–544. DOI: 10.1080/10426914.2019.1643476.
  • Mogilicharla, A.; Mittal, P.; Majumdar, S.; Mitra, K. Kriging Surrogate Based Multi-Objective Optimization of Bulk Vinyl Acetate Polymerization with Branching. Mater. Manuf. Process. 2015, 30(4), 394–402. DOI: 10.1080/10426914.2014.921709.
  • Inapakurthi, R. K.; Mitra, K. Optimal Surrogate Building Using SVR for an Industrial Grinding Process. Mater. Manuf. Process. 2022, 1–7. DOI:10.1080/10426914.2022.2039699.
  • Inapakurthi, R. K.; Pantula, P. D.; Miriyala, S. S.; Mitra, K. Data Driven Robust Optimization of Grinding Process Under Uncertainty. Mater. Manuf. Process. 2020, 35(16), 1870–1876. DOI: 10.1080/10426914.2020.1802042.
  • Sharma, S.; Pantula, P. D.; Miriyala, S. S.; Mitra, K. A Novel Data-Driven Sampling Strategy for Optimizing Industrial Grinding Operation Under Uncertainty Using Chance Constrained Programming. Powder Technol. 2021, 377, 913–923. DOI: 10.1016/j.powtec.2020.09.024.
  • Deb, K.; Mitra, K.; Dewri, R.; Majumdar, S. Towards a Better Understanding of the Epoxy-Polymerization Process Using Multi-Objective Evolutionary Computation. Chem. Eng. Sci. 2004, 59(20), 4261–4277. DOI: 10.1016/j.ces.2004.06.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.