305
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Plasma synthesis of ammonia by asymmetric electrode arrangement

, &
Pages 159-169 | Received 29 Mar 2022, Accepted 23 Jun 2022, Published online: 31 Jul 2022

References

  • Kamo, M.; Sato, Y.; Matsumoto, S.; Setaka, N. Diamond Synthesis from Gas Phase in Microwave Plasma. J. Cryst. Growth. 1983, 62(3), 642–644. DOI. DOI: 10.1016/0022-0248(83)90411-6.
  • Saito, Y.; Matsuda, S.; Nogita, S. Synthesis of Diamond by Decomposition of Methane in Microwave Plasma. J. Mater. Sci. Lett. 1986, 5(5), 565–568. DOI: 10.1007/bf01728692.
  • Saito, Y.; Sato, K.; Tanaka, H.; Fujita, K.; Matuda, S. Diamond Synthesis from Methane-Hydrogen-Water Mixed Gas Using a Microwave Plasma. J. Mater. Sci. 1988, 23(3), 842–846. DOI: 10.1007/BF01153976.
  • Shinde, K. P.; Ranot, M.; Choi, C. J.; Kim, H. S.; Chung, K. C. Plasma-Assisted Synthesis and Study of Structural and Magnetic Properties of Fe/c Core Shell. AIP Adv. 2017, 7(7), 075013. DOI: 10.1063/1.4985669.
  • Libenská, H.; Hanuš, J.; Košutová, T.; Dopita, M.; Kylián, O.; Cieslar, M.; Choukourov, A.; Biederman, H. Plasma-Based Synthesis of Iron Carbide Nanoparticles. Plasma Processes Polym. 2020, 17(11), 2000105. DOI: 10.1002/ppap.202000105.
  • Kareem, T. A.; Kaliani, A. A. Glow Discharge Plasma Electrolysis for Nanoparticles Synthesis. Ionics. 2012, 18(3), 315–327. DOI: 10.1007/s11581-011-0639-y.
  • Vollath, D.; Sickafus, K. E. Synthesis of Nanosized Ceramic Oxide Powders by Microwave Plasma Reactions. Nanostr. Materials. 1992, 1(5), 427–437. DOI: 10.1016/0965-9773(92)-90093-d.
  • Szépvölgyi, J.; Mohai, I.; Károly, Z.; Gál, L. Synthesis of Nanosized Ceramic Powders in a Radiofrequency Thermal Plasma Reactor. J. Eur. Ceram. Soc. 2008, 28(5), 895–899. DOI: 10.1016/j.jeurceramsoc.2007.09.034.
  • Rezaei, F.; Nikiforov, A.; Morent, R.; De Geyter, N. Plasma Modification of Poly Lactic Acid Solutions to Generate High Quality Electrospun PLA Nanofibers. Sci. Rep. 2018, 8(1), 2241. DOI: 10.1038/s41598-018-20714-5.
  • Rezaei, F.; Gorbanev, Y.; Chys, M.; Nikiforov, A.; Van Hulle, S. W. H.; Cos, P.; Bogaerts, A.; De Geyter, N. Investigation of Plasma-Induced Chemistry in Organic Solutions for Enhanced Electrospun PLA Nanofibers. Plasma Process. Polym. 2018, 15(6), e1700226. DOI: 10.1002/ppap.201700226.
  • Kortshagen, U. Nonthermal Plasma Synthesis of Nanocrystals: Fundamentals, Applications, and Future Research Needs. Plasma Chem. Plasma Process. 2016, 36(1), 73–84. DOI: 10.1007/s11090-015-9663-4.
  • Kortshagen, U. R.; Sankaran, R. M.; Pereira, R. N.; Girshick, S. L.; Wu, J. J.; Aydil, E. S. Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications. Chem. Rev. 2016, 116(18), 11061–11127. DOI: 10.1021/acs.chemrev.6b00039.
  • Eliasson, B.; Hirth, M.; Kogelschatz, U. Ozone Synthesis from Oxygen in Dielectric Barrier Discharges. J. Phys D: Appl Phys. 1987, 20(11), 1421–1437. DOI: 10.1088/0022-3727/20/11/010.
  • Pekárek, S. Non-Thermal Plasma Ozone Generation. Acta Polytech. 2003, 43(6), 47–51. DOI. DOI: 10.14311/498.
  • Malik, M. A.; Hughes, D. Ozone Synthesis Improves by Increasing Number Density of Plasma Channels and Lower Voltage in a Nonthermal Plasma. J. Phys D: Appl Phys. 2016, 49(13), 135202. DOI: 10.1088/0022-3727/49/13/135202.
  • Patil, B. S.; Wang, Q.; Hessel, V.; Lang, J. Plasma N2-Fixation: 1900-2014. Catal. Today. 2015, 256(1), 49–66. DOI: 10.1016/j.cattod.2015.05.005.
  • Chen, H.; Yuan, D.; Wu, A.; Lin, X.; Li, X. Review of Low-Temperature Plasma Nitrogen Fixation Technology. Waste Dispos. Sustain. Energy. 2021, 3(3), 201–217. DOI: 10.1007/s42768-021-00074-z.
  • Sugiyama, K.; Akazawa, K.; Oshima, M.; Miura, H.; Matsuda, T.; Nomura, O. Ammonia Synthesis by Means of Plasma Over MgO Catalyst. Plasma Chem. Plasma Process. 1986, 6(2), 179–193. DOI: 10.1007/BF00571275.
  • Yin, K. S.; Venugopalan, M. Plasma Chemical Synthesis. I. Effect of Electrode Material on the Synthesis of Ammonia. Plasma Chem. Plasma Process. 1983, 3(3), 343–350. DOI: 10.1007/BF00564632.
  • Miura, H.; Sugiyam, K.; Oshima, M.; Kanagawa, S.; Matsuda, T.; Mitamura, T.; Nomura, O. The Formation of Ammonia in the After-Glow Region of N2 Plasma. Denki Kagaku. 1988, 56(8), 656–657. DOI: 10.5796/kogyobutsurikagaku.56.656.
  • Uyama, H.; Matsumoto, O. Synthesis of Ammonia in High-Frequency Discharges. II. Synthesis of Ammonia in a Microwave Discharge Under Various Conditions. Plasma Chem. Plasma Process. 1989, 9(3), 421–432. DOI: 10.1007/BF01083676.
  • Nakajima, J.; Sekiguchi, H. Synthesis of Ammonia Using Microwave Discharge at Atmospheric Pressure. Thin Solid Films. 2008, 516(13), 4446–4451. DOI: 10.1016/j.tsf.2007.10.053.
  • Uyama, H.; Nakamura, T.; Tanaka, S.; Matsumoto, O. Catalytic Effect of Iron Wires on the Syntheses of Ammonia and Hydrazine in a Radio-Frequency Discharge. Plasma Chem. Plasma Process. 1993, 13(1), 117–131. DOI: 10.1007/BF01447174.
  • Bai, M.; Zhang, Z.; Bai, X.; Bai, M.; Ning, W. Plasma Synthesis of Ammonia with a Microgap Dielectric Barrier Discharge at Ambient Pressure. IEEE Trans. Plasma. Sci. 2003, 31(6), 1285–1291. DOI: 10.1109/TPS.2003.818761.
  • Bai, M.; Zhang, Z.; Bai, M.; Bai, X.; Gao, H. Synthesis of Ammonia Using CH4/N2 Plasmas Based on Micro-Gap Discharge Under Environmentally Friendly Condition. Plasma Chem. Plasma Process. 2008, 28(4), 405–414. DOI: 10.1007/s11090-008-9132-4.
  • Mizushima, T.; Matsumoto, K.; Sugoh, J.; Ohkita, H.; Kakuta, N. Tubular Membrane-Like Catalyst for Reactor with Dielectric-Barrier-Discharge Plasma and Its Performance in Ammonia Synthesis. Appl Catal A-Gen. 2004, 265(1), 53–59. DOI: 10.1016/j.apcata.2004.01.002.
  • Soday, F. J. Ammonia as a Petrochemical Raw Material. Financial Anal. J. 1951, 7(4), 41–51. DOI. DOI: 10.2469/faj.v7.n4.41.
  • Zumdahl, S. S. Ammonia, Encyclopedia Britannica, Oct 8, 2020. https://www.britannica.com/science/ammonia (accessed Apr 1 2022).
  • Smil, V. Detonator of the Population Explosion. Nature. 1999, 400(6743), 415. DOI: 10.1038/22672.
  • Kang, M.; Park, E. D.; Kim, J. M.; Yie, J. E. Manganese Oxide Catalysts for Nox Reduction with NH3 at Low Temperatures. Appl Catal A-Gen. 2007, 327(2), 261–269. DOI: 10.1016/j.apcata.2007.05.024.
  • Valera-Medinaa, A.; Xiaoa, H.; Owen-Jones, M.; David, W. I. F.; Bowen, P. J. Ammonia for Power. Prog. Energy Combust. Sci. 2018, 69, 63–102. DOI: 10.1016/j.pecs.2018.07.001.
  • Smith, C.; Hill, A. K.; Torrente-Murciano, L. Current and Future Role of Haber–Bosch Ammonia in a Carbon-Free Energy Landscape. Energy Environ. Sci. 2020, 13(7), 331–344. DOI: 10.1039/C9EE02873K.
  • Humphreys, J.; Lan, R.; Tao, S. Development and Recent Progress on Ammonia Synthesis Catalysts for Haber–Bosch Process. Adv. Energy Sustain. 2021, 2(1), 2000043. DOI: 10.1002/aesr.202000043.
  • Yun, D. S.; Joo, J. H.; Yu, J. H.; Yoon, H. C.; Kim, J. N.; Yoo, C. Y. Electrochemical Ammonia Synthesis from Steam and Nitrogen Using Proton Conducting Yttrium Doped Barium Zirconate Electrolyte with Silver, Platinum, and Lanthanum Strontium Cobalt Ferrite Electrocatalyst. J. Power Sources. 2015, 284, 245–251. DOI: 10.1016/j.jpowsour.2015.03.002.
  • Amar, I. A.; Lan, R.; Petit, C. T. G.; Tao, S. Solid-State Electrochemical Synthesis of Ammonia: A Review. J. Solid State Electrochem. 2011, 15(9), 1845–1860. DOI: 10.1007/s10008-011-1376-x.
  • Klinsrisuk, S.; Tao, S.; Irvine, J. T. S. 18 - Membrane Reactors for Ammonia Production. In Membrane Reactors for Energy Applications and Basic Chemical Production; Woodhead Publishing Series in Energy, 2015; pp. 543–563. doi:10.1016/B978-1-78242-223-5.00018-2
  • Si, Q.; Yang, J.; Fan, J.; Qiao, L.; Li, S. Can Metal Intermixing Cooperatively Improve Perovskites as Redox Materials for Thermochemical Ammonia Synthesis? a Case Study on (Sr,Y)(Ti,Ru)O3. J. Phys. Chem. C. 2021, 125(31), 17019–17030. DOI: 10.1021/acs.jpcc.1c04096.
  • Bartel, C. J.; Rumptz, J. R.; Weimer, A. W.; Holder, A. M.; Musgrave, C. B. High-Throughput Equilibrium Analysis of Active Materials for Solar Thermochemical Ammonia Synthesis. ACS Appl. Mater. Interfaces. 2019, 11(28), 24850–24858. DOI: 10.1021/acsami.9b01242.
  • Heidlage, M. G.; Kezar, E. A.; Snow, K. C.; Pfromm, P. H. Thermochemical Synthesis of Ammonia and Syngas from Natural Gas at Atmospheric Pressure. Ind. Eng. Chem. Res. 2017, 56(47), 14014–14024. DOI: 10.1021/acs.iecr.7b03173.
  • Penga, P.; Chen, P.; Schiappacasse, C.; Zhou, N.; Anderson, E.; Chen, D.; Liu, J.; Cheng, Y.; Hatzenbeller, R.; Addy, M., et al. A Review on the Non-Thermal Plasma-Assisted Ammonia Synthesis Technologies. J. Clean. Prod. 2018, 177, 597–609. DOI: 10.1016/j.jclepro.2017.12.229.
  • Cherkasov, N.; Ibhadon, A. O.; Fitzpatrick, P. A Review of the Existing and Alternative Methods for Greener Nitrogen Fixation. Chem. Eng. Process. Process. Intensif. 2015, 90, 24–33. DOI: 10.1016/j.cep.2015.02.004.
  • Duby, P. Electrometallurgy. Jom. 1977, 29(3), 13–15. DOI. DOI: 10.1007/BF03354303.
  • Evans, J. W. Metal Production: Electrometallurgy. Encyclopedia of Materials: Science and Technology, 2nd ed.; Elsevier, 2003; pp 1–12. 10.1016/B0-08-043152-6/01888-X
  • Zhang, M.; Reddy, R. G. Ionic Liquids Electrowinning of Aluminum in Batch Mode Cells. TMS Light Metals. 2006, 2, 451–455.
  • Schlesinger, M. E.; King, M. J.; Sole, K. C.; Davenport, W. G. Chapter 17 – Electrowinning. In Extractive Metallurgy of Copper; 5th ed.; Elsevier, 2011; pp 349–372. DOI: 10.1016/B978-0-08-096789-9.10017-4
  • Zhang, M.; Kamavaram, V.; Reddy, R. G. Ionic Liquid Metallurgy: Novel Electrolytes for Metals Extraction and Refining Technology. Mining Metall Explor. 2006, 23(4), 177–186. DOI: 10.1007/BF03403345.
  • Judge, W. D.; Paeng, J.; Azimi, G. Electrorefining for Direct Decarburization of Molten Iron. Nat. Mater. 2021. DOI: 10.1038/s41563-021-01106-z.
  • Sakamura, Y.; Omori, T. Electrolytic Reduction and Electrorefining of Uranium to Develop Pyrochemical Reprocessing of Oxide Fuels. Nucl. Technol. 2010, 171(3), 266–275. DOI. DOI: 10.13182/NT10-A10861.
  • Giurlani, W.; Zangari, G.; Gambinossi, F.; Passaponti, M.; Salvietti, E.; Di Benedetto, F.; Caporali, S.; Innocenti, M. Electroplating for Decorative Applications: Recent Trends in Research and Development. Coatings. 2018, 8(8), 260. DOI. DOI: 10.3390/coatings8080260.
  • Lodermeyer, J.; Multerer, M.; Zistler, M.; Jordan, S.; Gores, H. J.; Kipferl, W.; Diaconu, E.; Sperl, M.; Bayreuther, G. Electroplating of Dysprosium, Electrochemical Investigations, and Study of Magnetic Properties. J. Electrochem. Soc. 2006, 153(4), C242. DOI: 10.1149/1.2172548.
  • Reece Roth, J. Industrial Plasma Engineering; London: IOP Publishing, 1995.
  • Bruggeman, P. J., Frontiera, R. R., Kortshagen, U. R., Kushner, M. J., Linic, S., Schatz, G. C., Andaraarachchi, H., Exarhos, S., Jones, L. O., Mueller, C. M.; et al. Plasma-Driven Solution Electrolysis. J. Appl. Phys. 2021, 129(20), 200902.
  • Zhao, Y. M.; Patange, A.; Sun, D. W.; Tiwari, B. Plasma-Activated Water: Physicochemical Properties, Microbial Inactivation Mechanisms, Factors Influencing Antimicrobial Effectiveness, and Applications in the Food Industry. Compr. Rev. Food Sci. Food Saf. 2020, 19(6), 3951–3979. DOI: 10.1111/1541-4337.12644.
  • Petrovic, S. Industrial Electrochemical Processes. Electrochemistry Crash Course for Engineers. Springer. Cham Springer. Cham. 2021, 65–75. DOI: 10.1007/978-3-030-61562-8_9.
  • Shirai, N.; Uchida, S.; Tochikubo, F. Synthesis of Metal Nanoparticles by Dual Plasma Electrolysis Using Atmospheric Dc Glow Discharge in Contact with Liquid. Jpn. J. Appl. Phys. 2014, 53(4), 046202. DOI. DOI: 10.7567/JJAP.53.046202.
  • Delgado, D.; Hefter, G.; Minakshi, M. Hydrogen Generation. Alternative Energies. In Advanced Structured Materials; Springer, 2013; Vol. 34, pp 141–161. DOI:10.1007/978-3-642-40680-5_7.
  • Rumbach, P.; Bartels, D. M.; Sankaran, R. M.; Go, D. B. The Solvation of Electrons by an Atmospheric-Pressure Plasma. Nat. Commun. 2015, 6(1), 7248. DOI: 10.1038/ncomms8248.
  • Chaffin, J. H.; Bobbio, S. M. H. I.; Inyang, H. I.; Kaanagbara, L. Hydrogen Production by Plasma Electrolysis. J. Energy Eng. 2006, 132(3), 104–108. DOI: 10.1061/(ASCE)0733-9402(2006)132:3(104).
  • Li, C.; Wang, T.; Gong, J. Alternative Strategies Toward Sustainable Ammonia Synthesis. Trans. Tianjin Univ. 2020, 26(2), 67–91. DOI: 10.1007/s12209-020-00243-x.
  • Van Helden, J. H.; Wagemans, W.; Yagci, G.; Zijlmans, R. A. B.; Schram, D. C.; Engeln, R.; Lombardi, G.; Stancu, G. D.; Röpcke, J. Detailed Study of the Plasma-Activated Catalytic Generation of Ammonia in N2-H2 Plasmas. J. Appl. Phys. 2002, 101(4), 043305. DOI: 10.1063/1.2645828.
  • Truong, N. V.; Dung, N. Q.; Huy, N. N.; Hao, P. V.; Thanh, D. V. Ultrasonic-Assisted Cathodic Plasma Electrolysis Approach for Producing of Graphene Nanosheets. Sonochemical Reactions, IntechOpen. DOI. 2020, 47–60. 10.5772/intechopen.89267
  • Ganci, F.; Baguet, T.; Aiello, G.; Cusumano, V.; Mandin, P.; Sunseri, C.; Inguanta, R. Nanostructured Ni Based Anode and Cathode for Alkaline Water Electrolyzers. Energies. 2019, 12(19), 3669. DOI. DOI: 10.3390/en12193669.
  • Lei, Q.; Wang, B.; Wang, P.; Liu, S. Hydrogen Generation with Acid/alkaline Amphoteric Water Electrolysis. J. Energy Chem. 2019, 38, 162–169. DOI: 10.1016/J.JECHEM.2018.12.022.
  • Pourbaix, M.; Burbank, J. Atlas D-Equilibres Electrochimiques. J. Electrochem. Soc. 1964, 111(1), 14C. DOI: 10.1149/1.2426051.
  • Bosko, M. L.; Rodrigues, M. A. S.; Ferreira, J. Z.; Miró, E. E.; Bernardes, A. M. Nitrate Reduction of Brines from Water Desalination Plants by Membrane Electrolysis. J. Membr. Sci. 2014, 451, 276–284. DOI: 10.1016/j.memsci.2013.10.004.
  • Kaczur, J. J. Electrochemical Reduction of Nitrate. Twelfth International Forum on Electrosynthesis in the Chemical Industry: Clean and Efficient Processing, Sheraton Sand Key, Clearwater Beach, FL, October 11-15, 1998. DOI: 10.13140/RG.2.2.10271.61602.
  • Namihira, T.; Tsukamoto, S.; Wang, D.; Katsuki, S.; Hackam, R.; Okamoto, K.; Akiyama, H. Production of Nitric Monoxide Using Pulsed Discharges for a Medical Application. IEEE Trans. Plasma. Sci. 2000, 28(1), 109–114. DOI: 10.1109/27.842877.
  • Namihira, T.; Sakai, S.; Yamaguchi, T.; Yamamoto, K.; Yamada, C.; Kiyan, T.; Sakugawa, T.; Katsuki, S.; Akiyama, H. Electron Temperature and Electron Density of Underwater Pulsed Discharge Plasma Produced by Solid-State Pulsed-Power Generator. IEEE Trans. Plasma. Sci. 2007, 35(3), 614–618. DOI: 10.1109/TPS.2007.896965.
  • Reader, J. C.; Wiese, C. H.; Martin, W. L., and A, G. Wavelengths and Transition Probabilities for Atoms and Atomic Ions, National Standard Reference Data Series : Part I. Wavelengths - Part II; Washington DC: Transition Probabilities; National Bureau Standard, 1980.
  • Wiese, W. L.; Fuhr, J. R., and Deters, T. M. Atomic Transition Probabilities of Carbon, Nitrogen, and Oxygen: A Critical Data Compilation (Journal of Physical and Chemical Reference Data Monograph 7); Maryland: American Chemical Society/American Institute of Physics, 1996.
  • Lumma, D. Investigation of a Diagnostic Technique for Measuring Electron Densities via Stark Broadening on the Alcator C-Mod Tokamak; Massachusetts Institute of Technology. M.S. Massachusetts Institute of Technology, Dept. of Physics, 1996. http://hdl.handle.net/1721.1/38371
  • Xiao, D.; Cheng, C.; Shen, J.; Lan, Y.; Xie, H. X.; Shu, X.; Meng, Y.; Li, J.; Chu, P. K. Electron Density Measurements of Atmospheric-Pressure Non-Thermal N2 Plasma Jet by Stark Broadening and Irradiance Intensity Methods. Phys. Plasmas. 2014, 21(5), 053510. DOI: 10.1063/1.4879033.
  • Gigososa, M. A.; González, M. Á.; Cardeñosoc, V. Computer Simulated Balmer-Alpha, -Beta and -Gamma Stark Line Profiles for Non-Equilibrium Plasmas Diagnostics. Spectrochim. Acta B: At. Spectrosc. 2003, 58(8), 1489–1504. DOI: 10.1016/S0584-8547(03)00097-1.
  • Barkhordari, A.; Ganjovi, A.; Mirzaei, I.; Falahat, A.; Rostami Ravari, M. N. A Pulsed Plasma Jet with the Various Ar/n2 Mixtures. J. Theor. Appl. Phys. 2017, 11(4), 301–312. DOI: 10.1007/s40094-017-0271-y.
  • K, O.N.O. Theoretical Concept of Hydrogen Redox Electric Power Generation. Electr. Eng. Jpn. 2016, 197(4), 12–24. DOI: 10.1002/eej.22881.
  • Shen, M.; Bennett, N.; Ding, Y.; Scott, K. A Concise Model for Evaluating Water Electrolysis. Int. J. Hydrog. Energy. 2011, 36(22), 14335–14341. DOI: 10.1016/j.ijhydene.2010.12.029.
  • Schutze, A.; Jeong, J. Y.; Babayan, S. E.; Park, J.; Selwyn, G. S.; Hicks, R. F. The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources. IEEE Trans. Plasma. Sci. 1998, 26(6), 1685–1694. DOI: 10.1109/27.747887.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.