323
Views
1
CrossRef citations to date
0
Altmetric
Review

Selective laser melting and post-processing stages for enhancing the material behavior of cobalt-chromium alloy in total hip replacement: a review

&
Pages 495-515 | Received 14 Apr 2022, Accepted 23 Jun 2022, Published online: 02 Aug 2022

References

  • Kracke, A. Superalloys, the Most Successful Alloy System of Modern Times-Past, Present, and Future. 2016, 13–50. DOI: 10.7449/2010/superalloys_2010_13_50.
  • Coutsouradis, D.; Davin, A.; Lamberigts, M. Cobalt-Based Superalloys for Applications in Gas Turbines. Mater. Sci. Eng. 1987, 88, 11–19. DOI: 10.1016/0025-5416(87)90061-9.
  • Selvaraj, S. K.; Prasad, S. K.; Yasin, S. Y.; Subhash, U. S.; Verma, P. S.; Manikandan, M.; Dev, S. J. Additive Manufacturing of Dental Material Parts via Laser Melting Deposition: A Review, Technical Issues, and Future Research Directions. J. Manuf. Process. February, 2022, 76, 67–78. DOI: 10.1016/j.jmapro.2022.02.012.
  • Kassapidou, M.; Franke Stenport, V.; Hjalmarsson, L.; Johansson, C. B. Cobalt-Chromium Alloys in Fixed Prosthodontics in Sweden. Acta Biomater. Odontol. Scand. 2017, 3(1), 53–62. DOI: 10.1080/23337931.2017.1360776.
  • Svanborg, P.; Hjalmarsson, L. A Systematic Review on the Accuracy of Manufacturing Techniques for Cobalt Chromium Fixed Dental Prostheses. Biomater. Investig. Dent. 2020, 7(1), 31–40. DOI: 10.1080/26415275.2020.1714445.
  • Manivasagam, G.; Dhinasekaran, D.; Rajamanickam, A. Biomedical Implants: Corrosion and Its Prevention - a Review. Recent Patents Corros. Sci. 2010, 2(1), 40–54. !2009-12-22 !2010-01-20 !2010-05-25 !. DOI: 10.2174/1877610801002010040.
  • Song, C.; Yang, Y.; Wang, Y.; Wang, D.; Yu, J. Research on Rapid Manufacturing of CoCrmo Alloy Femoral Component Based on Selective Laser Melting. Int. J. Adv. Manuf. Technol. 2014, 75(1–4), 445–453. DOI: 10.1007/s00170-014-6150-7.
  • Sun, J.; Zhang, F. Q. The Application of Rapid Prototyping in Prosthodontics. J. Prosthodont. 2012, 21(8), 641–644. DOI: 10.1111/j.1532-849X.2012.00888.x.
  • Torabi, K.; Farjood, E.; Hamedani, S. Rapid Prototyping Technologies and Their Applications in Prosthodontics, a Review of Literature. J. Dent. (Shiraz, Iran). 2015, 16(1), 1–9.
  • Corrosion, W.; Nickels, R.; Nickel-Chromium, C. H. R.; Cracking, S. © 2000 ASM International. All Rights Reserved. ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys (#06178G) Www.Asminternational.Org. 2000.
  • Dilberoglu, U. M.; Gharehpapagh, B.; Yaman, U.; Dolen, M. The Role of Additive Manufacturing in the Era of Industry 4.0. Procedia. Manuf. June, 2017, 11, 545–554. DOI: 10.1016/j.promfg.2017.07.148.
  • Szymczyk-Ziółkowska, P.; Ziółkowski, G.; Hoppe, V.; Rusińska, M.; Kobiela, K.; Madeja, M.; Dziedzic, R.; Junka, A.; Detyna, J. Improved Quality and Functional Properties of Ti-6al-4V ELI Alloy for Personalized Orthopedic Implants Fabrication with EBM Process. J. Manuf. Process. 2022, 76(May 2021), 175–194. DOI: 10.1016/j.jmapro.2022.02.011.
  • Gomez, P. F.; Morcuende, J. A. Early Attempts at Hip Arthroplasty–1700s to 1950s. Iowa Orthop. J. 2005, 25, 25–29.
  • Kumar, N.; Arora, N. C.; Datta, B. Bearing Surfaces in Hip Replacement - Evolution and Likely Future. Med. J. Armed Forces India. 2014, 70(4), 371–376. DOI: 10.1016/j.mjafi.2014.04.015.
  • Triclot, P. Metal-On-Metal: History, State of the Art (2010). Int. Orthop. 2011, 35(2), 201–206. DOI: 10.1007/s00264-010-1180-8.
  • Molli, R. G.; Lombardi, A. V.; Berend, K. R.; Adams, J. B.; Sneller, M. A. Metal-On-Metal Vs Metal-On-Improved Polyethylene Bearings in Total Hip Arthroplasty. J. Arthroplasty. 2011, 26(SUPPL. 6), 8–13. DOI: 10.1016/j.arth.2011.04.029.
  • Brown, S. R.; Davies, W. A.; DeHeer, D. H.; Swanson, A. B. Long-Term Survival of McKee-Farrar Total Hip Prostheses. Clin. Orthop. Relat. Res. 2002, 402(402), 157–163. DOI: 10.1097/00003086-200209000-00013.
  • McKellop, H.; Park, S. H.; Chiesa, R.; Doorn, P.; Lu, B.; Normand, P.; Grigoris, P.; Amstutz, H. In vivo Wear of 3 Types of Metal on Metal Hip Prostheses During 2 Decades of Use. Clin. Orthop. Relat. Res. 1996, 329(SUPPL), S128–S140. DOI: 10.1097/00003086-199608001-00013.
  • Bezwada, H. P.; Cho, R. H., and Nazarian, D. G. Hemiarthroplasty of the Hip. Oper. Tech. Adult Reconstr. Surg . 2012, 94(19), 39–54.
  • Galante, R.; Figueiredo-Pina, C. G.; Serro, A. P. Additive Manufacturing of Ceramics for Dental Applications: A Review. Dent. Mater. 2019, 35(6), 825–846. The Academy of Dental Materials. DOI: 10.1016/j.dental.2019.02.026.
  • Knight, S. R.; Aujla, R.; Biswas, S. P. Total Hip Arthroplasty – Over 100 Years of Operative History. Orthop. Rev. (Pavia). 2011, 3(2), 16. DOI: 10.4081/or.2011.e16.
  • Bota, N. C.; Nistor, D. V.; Caterev, S.; Todor, A. Historical Overview of Hip Arthroplasty: From Humble Beginnings to a High-Tech Future. Orthop. Rev. (Pavia). 2021, 13(1), 19–23. DOI: 10.4081/or.2021.8773.
  • Arora, K.; Singh, A. K. Magnetorheological Finishing of UHMWPE Acetabular Cup Surface and Its Performance Analysis. Mater. Manuf. Process. 2020, 35(14), 1631–1649. DOI: 10.1080/10426914.2020.1784928.
  • Davidson, J. A.; Mishra, A. K. Surface Modification Issues for Orthopaedic Implant Bearing Surfaces. Mater. Manuf. Process. 1992, 7(3), 405–421. DOI: 10.1080/10426919208947429.
  • Pietrzak, W. S. Ultra-High Molecular Weight Polyethylene for Total Hip Acetabular Liners: A Brief Review of Current Status. J. Investig. Surg. 2021, 34(3), 321–323. DOI: 10.1080/08941939.2019.1624898.
  • Wawrose, R. A., M.D1; Urish, K. L., M.D., P. Diagnosis and Management of Adverse Reactions to Metal Debris. Physiol. Behav. 2020, 176(1), 100–106. DOI: 10.1016/j.oto.2019.100732.Diagnosis.
  • Shao, L.; Du, Y.; Dai, K.; Wu, H.; Wang, Q.; Liu, J.; Tang, Y.; Wang, L. β-Ti Alloys for Orthopedic and Dental Applications: A Review of Progress on Improvement of Properties Through Surface Modification. Coatings. 2021, 11(12). DOI: 10.3390/coatings11121446.
  • Merola, M.; Affatato, S. Materials for Hip Prostheses: A Review of Wear and Loading Considerations. Mater. (Basel). 2019, 12(3), 495. DOI: https://doi.org/10.3390/ma12030495.
  • Haugli, K. H.; Syverud, M.; Samuelsen, J. T. Ion Release from Three Different Dental Alloys – Effect of Dynamic Loading and Toxicity of Released Elements. Biomater. Investig. Dent. 2020, 7(1), 71–79. DOI: 10.1080/26415275.2020.1747471.
  • Couto, M.; Vasconcelos, D. P.; Sousa, D. M.; Sousa, B.; Conceição, F.; Neto, E.; Lamghari, M.; Alves, C. J. The Mechanisms Underlying the Biological Response to Wear Debris in Periprosthetic Inflammation. Front. Mater. August, 2020, 7. DOI: 10.3389/fmats.2020.00274.
  • Huang, X.; Ding, S.; Yue, W. Effect of Cryogenic Treatment on Tribological Behavior of Ti6al4v Alloy Fabricated by Selective Laser Melting. J. Mater. Res. Technol. 2021, 12, 1979–1987. DOI: 10.1016/j.jmrt.2021.04.012.
  • Han, Y.; Liu, F.; Zhang, K.; Huang, Q.; Guo, X.; Wang, C. A Study on Tribological Properties of Textured Co-Cr-Mo Alloy for Artificial Hip Joints. Int. J. Refract. Met. Hard Mater. 2021, 95, 105463. DOI: 10.1016/j.ijrmhm.2020.105463.
  • Hong, J. H.; Yeoh, F. Y. Mechanical Properties and Corrosion Resistance of Cobalt-Chrome Alloy Fabricated Using Additive Manufacturing. Mater. Today Proc. 2019, 29(November 2018), 196–201. DOI: 10.1016/j.matpr.2020.05.543.
  • Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L. Review of Selective Laser Melting: Materials and Applications. Appl. Phys. Rev. 2015, 2(4), 041101. DOI: 10.1063/1.4935926.
  • Gokuldoss, P. K.; Kolla, S.; Eckert, J. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—selection Guidelines. Mater. (Basel). 2017, 10(6), 672. DOI: 10.3390/ma10060672.
  • Jiang, J.; Xu, X.; Stringer, J. Support Structures for Additive Manufacturing: A Review. J. Manuf. Mater. Process. 2018, 2(4). DOI: 10.3390/jmmp2040064.
  • Ngo, T. D.; Kashani, A.; Imbalzano, G.; Nguyen, K. T. Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. Part B Eng. February, 2018, 143, 172–196. DOI: 10.1016/j.compositesb.2018.02.012.
  • Pekok, M. A.; Setchi, R.; Ryan, M.; Han, Q.; Gu, D. Effect of Process Parameters on the Microstructure and Mechanical Properties of AA2024 Fabricated Using Selective Laser Melting. Int. J. Adv. Manuf. Technol. 2021, 112(1–2), 175–192. DOI: 10.1007/s00170-020-06346-y.
  • Munir, K.; Biesiekierski, A.; Wen, C.; Li, Y. Selective Laser Melting in Biomedical Manufacturing. Met. Biomater. Process. Med. Device Manuf. 2020, 235–269. DOI: 10.1016/b978-0-08-102965-7.00007-2.
  • Na, T. W.; Kim, W. R.; Yang, S. M.; Kwon, O.; Park, J. M.; Kim, G. H.; Jung, K. H.; Lee, C. W.; Park, H. K.; Kim, H. G. Effect of Laser Power on Oxygen and Nitrogen Concentration of Commercially Pure Titanium Manufactured by Selective Laser Melting. Mater. Charact. February, 2018, 143, 110–117. DOI: 10.1016/j.matchar.2018.03.003.
  • Maconachie, T.; Leary, M.; Lozanovski, B.; Zhang, X.; Qian, M.; Faruque, O.; Brandt, M. SLM Lattice Structures: Properties, Performance, Applications and Challenges. Mater. Des. 2019, 183, 108137. DOI: 10.1016/j.matdes.2019.108137.
  • Yuan, L.; Ding, S.; Wen, C. Additive Manufacturing Technology for Porous Metal Implant Applications and Triple Minimal Surface Structures: A Review. Bioact. Mater. 2019, 4(1), 56–70. DOI: 10.1016/j.bioactmat.2018.12.003.
  • Mumtaz, K. A.; Erasenthiran, P.; Hopkinson, N. High Density Selective Laser Melting of Waspaloy®. J. Mater. Process. Technol. 2008, 195(1–3), 77–87. DOI: 10.1016/j.jmatprotec.2007.04.117.
  • Gu, D.; Hagedorn, Y. C.; Meiners, W.; Meng, G.; Batista, R. J. S.; Wissenbach, K.; Poprawe, R. Densification Behavior, Microstructure Evolution, and Wear Performance of Selective Laser Melting Processed Commercially Pure Titanium. Acta. Mater. 2012, 60(9), 3849–3860. DOI: 10.1016/j.actamat.2012.04.006.
  • Liverani, E.; Fortunato, A.; Leardini, A.; Belvedere, C.; Siegler, S.; Ceschini, L.; Ascari, A. Fabrication of Co-Cr-Mo Endoprosthetic Ankle Devices by Means of Selective Laser Melting (SLM). Mater. Des. 2016, 106, 60–68. DOI: 10.1016/j.matdes.2016.05.083.
  • Hazlehurst, K.; Wang, C. J.; Stanford, M. Evaluation of the Stiffness Characteristics of Square Pore CoCrmo Cellular Structures Manufactured Using Laser Melting Technology for Potential Orthopaedic Applications. Mater. Des. 2013, 51, 949–955. DOI: 10.1016/j.matdes.2013.05.009.
  • Jevremovic, D.; Puskar, T.; Kosec, B.; Vukelic, D.; Budak, I.; Aleksandrovic, S.; Egbeer, D.; Williams, R. The Analysis of the Mechanical Properties of F75 Co-Cr Alloy for Use in Selective Laser Melting (SLM) Manufacturing of Removable Partial Dentures (RPD). Metalurgija. 2012, 51(2), 171–174.
  • Ziębowicz, A.; Matus, K.; Matula, M.; Pakieła, W.; Pawlyta, G. Comparison of the Crystal Structure and Wear Resistance of Co-Based Alloys with Low Carbon Content Manufactured by Selective Laser Sintering and Powder Injection Molding. Crystals. 2020, 10(3), 197. DOI: 10.3390/cryst10030197.
  • Takaichi, A.; Suyalatu; Nakamoto, T.; Joko, N.; Nomura, N.; Tsutsumi, Y.; Migita, S.; Doi, H.; Kurosu, S.; Chiba, A., et al. Microstructures and Mechanical Properties of Co-29cr-6mo Alloy Fabricated by Selective Laser Melting Process for Dental Applications. J. Mech. Behav. Biomed. Mater. 2013, 21, 67–76. DOI: 10.1016/j.jmbbm.2013.01.021.
  • Seki, E.; Kajima, Y.; Takaichi, A.; Kittikundecha, N.; Cho, H. H. W.; Htat, H. L.; Doi, H.; Hanawa, T.; Wakabayashi, N. Effect of Heat Treatment on the Microstructure and Fatigue Strength of CoCrmo Alloys Fabricated by Selective Laser Melting. Mater. Lett. 2019, 245, 53–56. DOI: 10.1016/j.matlet.2019.02.085.
  • Wang, J. H.; Ren, J.; Liu, W.; Wu, X. Y.; Gao, M. X.; Bai, P. K. Effect of Selective Laser Melting Process Parameters on Microstructure and Properties of Co-Cr Alloy. Mater. (Basel). 2018, 11(9). DOI: 10.3390/ma11091546.
  • Bandyopadhyay, A.; Ciliveri, S.; Bose, S. Metal Additive Manufacturing for Load-Bearing Implants. J. Indian Inst. Sci. 2022, xxx, 1–24. DOI: 10.1007/s41745-021-00281-x.
  • Aykut, Ş.; Bagci, E.; Kentli, A.; Yazicioǧlu, O. Experimental Observation of Tool Wear, Cutting Forces and Chip Morphology in Face Milling of Cobalt Based Super-Alloy with Physical Vapour Deposition Coated and Uncoated Tool. Mater. Des. 2007, 28(6), 1880–1888. DOI: 10.1016/j.matdes.2006.04.014.
  • Shokrani, A.; Dhokia, V.; Newman, S. T. Environmentally Conscious Machining of Difficult-To-Machine Materials with Regard to Cutting Fluids. Int. J. Mach. Tools Manuf. 2012, 57, 83–101. DOI: 10.1016/j.ijmachtools.2012.02.002.
  • Rosli, N.; Ambak, K.; Daniel, B. D.; Prasetijo, J.; Tun, U.; Onn, H., and Pahat, B. Jurnal. Teknologi. September, 2015. A metallurgical overview of Ti – based alloy in biomedical applications , 1, 1–6.
  • Kurosu, S.; Matsumoto, H.; Chiba, A. Grain Refinement of Biomedical Co-27cr-5mo-0.16N Alloy by Reverse Transformation. Mater. Lett. 2010, 64(1), 49–52. DOI: 10.1016/j.matlet.2009.10.001.
  • Monroy, K.; Delgado, J.; Ciurana, J. Study of the Pore Formation on CoCrmo Alloys by Selective Laser Melting Manufacturing Process. Procedia. Eng. 2013, 63, 361–369. DOI: 10.1016/j.proeng.2013.08.227.
  • Marek, I.; Novák, P.; Mlynár, J.; Vojtěch, D.; Kubatík, T. F.; Málek, J. Powder Metallurgy Preparation of Co-Based Alloys for Biomedical Applications. Acta Phys. Pol. A. 2015, 128(4), 597–601. DOI: 10.12693/APhysPolA.128.597.
  • Salahshoor, M.; Guo, Y. B. Cutting Mechanics in High Speed Dry Machining of Biomedical Magnesiumcalcium Alloy Using Internal State Variable Plasticity Model. Int. J. Mach. Tools Manuf. 2011, 51(7–8), 579–590. DOI: 10.1016/j.ijmachtools.2011.04.004.
  • Patel, N.; Gohil, P. A Review on Biomaterials: Scope, Applications & Human Anatomy Significance. Int. J. Emerg. Technol. Adv. Eng. 2012, 2(4), 91–101.
  • Sahin, O.; Tuncdemir, A. R.; Cetinkara, H. A.; Guder, H. S.; Sahin, E. Production and Mechanical Behaviour of Biomedical CoCrmo Alloy. Chinese Phys. Lett. 2011, 28(12), 126201. DOI: 10.1088/0256-307X/28/12/126201.
  • BomBač, D.; Brojan, M.; Fajfar, P.; Kosel, F.; Turk, R. Review of Materials in Medical Applications Pregled Materialov V Medicinskih Aplikacijah. Rmz–materials and Geoenvironment. 2007, 54(4), 471–499.
  • Sánchez-De Jesús, F.; Bolarín-Miró, A. M.; Torres-Villaseñor, G.; Cortés-Escobedo, C. A.; Betancourt-Cantera, J. A. Mechanical Alloying of Biocompatible Co-28cr-6mo Alloy. J. Mater. Sci. Mater. Med. 2010, 21(7), 2021–2026. DOI: 10.1007/s10856-010-4066-9.
  • Valero Vidal, C.; Igual Muñoz, A. Study of the Adsorption Process of Bovine Serum Albumin on Passivated Surfaces of CoCrmo Biomedical Alloy. Electrochim. Acta. 2010, 55(28), 8445–8452. DOI: 10.1016/j.electacta.2010.07.028.
  • Maria Cristina Tanzi., et al. 2012 Foundations of Biomaterial Engineering, 506, 199–287. DOI: 10.1201/9781003049203-9.
  • Wang, Z.; Tang, S. Y.; Scudino, S.; Ivanov, Y. P.; Qu, R. T.; Wang, D.; Yang, C.; Zhang, W. W.; Greer, A. L.; Eckert, J., et al. Additive Manufacturing of a Martensitic Co–cr–mo Alloy: Towards Circumventing the Strength–ductility Trade-Off. Addit. Manuf. November, 2021, 37, 1–14. DOI: 10.1016/j.addma.2020.101725.
  • Patel, B.; Inam, F.; Reece, M.; Edirisinghe, M.; Bonfield, W.; Huang, J.; Angadji, A. A Novel Route for Processing Cobalt-Chromium-Molybdenum Orthopaedic Alloys. J. R. Soc. Interface. 2010, 7(52), 1641–1645. DOI: 10.1098/rsif.2010.0036.
  • Chakrabarty, G.; Vashishtha, M.; Leeder, D. Polyethylene in Knee Arthroplasty: A Review. J. Clin. Orthop. Trauma. 2015, 6(2), 108–112. DOI: 10.1016/j.jcot.2015.01.096.
  • Kunčická, L.; Kocich, R.; Lowe, T. C. Advances in Metals and Alloys for Joint Replacement. Prog. Mater. Sci. April, 2017, 88, 232–280. DOI: 10.1016/j.pmatsci.2017.04.002.
  • Talha, M.; Behera, C. K.; Sinha, O. P. A Review on Nickel-Free Nitrogen Containing Austenitic Stainless Steels for Biomedical Applications. Mater. Sci. Eng. C. 2013, 33(7), 3563–3575. DOI: 10.1016/j.msec.2013.06.002.
  • Liao, Y.; Pourzal, R.; Stemmer, P.; Wimmer, M. A.; Jacobs, J. J.; Fischer, A.; Marks, L. D. New Insights into Hard Phases of CoCrmo Metal-On-Metal Hip Replacements. J. Mech. Behav. Biomed. Mater. 2012, 12, 39–49. DOI: 10.1016/j.jmbbm.2012.03.013.
  • Barucca, G.; Santecchia, E.; Majni, G.; Girardin, E.; Bassoli, E.; Denti, L.; Gatto, A.; Iuliano, L.; Moskalewicz, T.; Mengucci, P. Structural Characterization of Biomedical Co-Cr-Mo Components Produced by Direct Metal Laser Sintering. Mater. Sci. Eng. C. 2015, 48, 263–269. DOI: 10.1016/j.msec.2014.12.009.
  • Patel, B.; Favaro, G.; Inam, F.; Reece, M. J.; Angadji, A.; Bonfield, W.; Huang, J.; Edirisinghe, M. Cobalt-Based Orthopaedic Alloys: Relationship Between Forming Route, Microstructure and Tribological Performance. Mater. Sci. Eng. C. 2012, 32(5), 1222–1229. DOI: 10.1016/j.msec.2012.03.012.
  • Cadel, E. S.; Topoleski, L. D. T.; Vesnovsky, O.; Anderson, C. R.; Hopper Jr, R. H.; Engh Jr, C. A., and Di Prima, M. A. A Comparison of Metal Metal and Ceramic Metal Taper‐trunnion Modular Connections. J. Biomed. Mater. Res 110(1), 135–143. 2021. in.Pdf. wiley.
  • Broomfield, J. A. J.; Malak, T. T.; Thomas, G. E. R.; Palmer, A. J. R.; Taylor, A.; Glyn-Jones, S. The Relationship Between Polyethylene Wear and Periprosthetic Osteolysis in Total Hip Arthroplasty at 12 Years in a Randomized Controlled Trial Cohort. J. Arthroplasty. 2017, 32(4), 1186–1191. DOI: 10.1016/j.arth.2016.10.037.
  • Zaveri, T. D.; Dolgova, N. V.; Lewis, J. S.; Hamaker, K.; Clare-Salzler, M. J.; Keselowsky, B. G. Macrophage Integrins Modulate Response to Ultra-High Molecular Weight Polyethylene Particles and Direct Particle-Induced Osteolysis. Biomaterials. 2017, 115, 128–140. DOI: 10.1016/j.biomaterials.2016.10.038.
  • Alvarez-Vera, M.; Ortega, J. A.; Ortega-Ramos, I. A.; Hdz-García, H. M.; Muñoz-Arroyo, R.; Díaz-Guillén, J. C.; Acevedo-Dávila, J. L.; Hernández-Rodriguez, M. A. L. Tribological and Microstructural Characterization of Laser Microtextured CoCr Alloy Tested Against UHMWPE for Biomedical Applications. Wear. 2021, September 2020, 1–10. DOI: 10.1016/j.wear.2021.203819.
  • Braun, S.; Uhler, M.; Bormann, T.; Schroeder, S.; Jaeger, S.; Sonntag, R.; Kretzer, J. P. Backside Wear in Total Knee Replacement: A New Quantitative Measurement Method and a Comparison of Polished Cobalt-Chromium Tibial Trays with Titanium Tibial Trays. Wear. 2021, 466– 467(November 2020), 203552. DOI: 10.1016/j.wear.2020.203552.
  • Shukla, K.; Sugumaran, A. A.; Khan, I.; Ehiasarian, A. P.; Hovsepian, P. E. Low Pressure Plasma Nitrided CoCrmo Alloy Utilising HIPIMS Discharge for Biomedical Applications. J. Mech. Behav. Biomed. Mater. July, 2020, 111, 104004. DOI: 10.1016/j.jmbbm.2020.104004.
  • Ahmed, R.; de Villiers Lovelock, H. L.; Davies, S. Sliding Wear of Blended Cobalt Based Alloys. Wear. 2021, 466–467, 203533. DOI: 10.1016/j.wear.2020.203533.
  • Balagna, C.; Spriano, S.; Faga, M. G. Characterization of Co-Cr-Mo Alloys After a Thermal Treatment for High Wear Resistance. Mater. Sci. Eng. C. 2012, 32(7), 1868–1877. DOI: 10.1016/j.msec.2012.05.003.
  • Shamsul, J. B.; Nurhidayah, A. Z.; Ruzaidi, C. M. Characterization of Cobalt-Chromium-HAP Biomaterial for Biomedical Application. J. Appl. Sci. Resaech. 2007, 3(11), 1544–1553.
  • Turell, M. B.; Bellare, A. A Study of the Nanostructure and Tensile Properties of Ultra-High Molecular Weight Polyethylene. Biomaterials. 2004, 25(17), 3389–3398. DOI: 10.1016/j.biomaterials.2003.10.027.
  • Evans, J. T.; Evans, J. P.; Walker, R. W.; Blom, A. W.; Whitehouse, M. R.; Sayers, A. How Long Does a Hip Replacement Last? a Systematic Review and Meta-Analysis of Case Series and National Registry Reports with More Than 15 Years of Follow-Up. Lancet (London, England). 2019, 393(10172), 647–654. DOI: 10.1016/S0140-6736(18)31665-9.
  • Lewis, G. Properties of Crosslinked Ultra-High-Molecular-Weight Polyethylene. Biomaterials. 2001, 22(4), 371–401. DOI: https://doi.org/10.1016/S0142-9612(00)00195-2.
  • Kurtz, S. M.; Ong, K. L.; Lau, E.; Widmer, M.; Maravic, M.; Gómez-Barrena, E.; De Fátima De Pina, M.; Manno, V.; Torre, M.; Walter, W. L., et al. International Survey of Primary and Revision Total Knee Replacement. Int. Orthop. 2011, 35(12), 1783–1789. DOI: 10.1007/s00264-011-1235-5.
  • Jin, W.; Chu, P. K. Ultra High Molecular Weight Polyethyl- Ene Volume 2. 2019.
  • Patil, N. A.; Njuguna, J.; Kandasubramanian, B. UHMWPE for Biomedical Applications: Performance and Functionalization. Eur. Polym. J. 2020, 125(October 2019), 109529. DOI: 10.1016/j.eurpolymj.2020.109529.
  • Li, Z.; Xiang, S.; Wu, C.; Wang, Y.; Weng, X. Vitamin E Highly Cross-Linked Polyethylene Reduces Mid-Term Wear in Primary Total Hip Replacement: A Meta-Analysis and Systematic Review of Randomized Clinical Trials Using Radiostereometric Analysis. EFORT Open Rev. September, 2021, 6(9), 759–770. DOI: 10.1302/2058-5241.6.200072.
  • More, S. E.; Dave, J. R.; Makar, P. K.; Bhoraskar, S. V.; Premkumar, S.; Tomar, G. B.; Mathe, V. L. Surface Modification of UHMWPE Using ECR Plasma for Osteoblast and Osteoclast Differentiation. Appl. Surf. Sci. 2020, 506(October 2019), 144665. DOI: 10.1016/j.apsusc.2019.144665.
  • Ouellette, E. S.; Zhu, D.; Liu, Y.; Gilbert, J. L. Long-Term Fretting Corrosion Performance of Modular Head-Neck Junctions with Self-Reinforced Composite Gaskets from PEEK and UHMWPE. J. Mech. Behav. Biomed. Mater. February, 2022, 129, 105149. DOI: 10.1016/j.jmbbm.2022.105149.
  • Zohdi, H.; Emami, M.; Reza, H. Galvanic Corrosion Behavior of Dental Alloys. Environ. Ind. Corros. - Pract. Theor. Asp. 2012. DOI: 10.5772/52319.
  • Li, Y.; Yang, W.; Li, X.; Zhang, X.; Wang, C.; Meng, X.; Pei, Y.; Fan, X.; Lan, P.; Wang, C., et al. Improving Osteointegration and Osteogenesis of Three-Dimensional Porous Ti6al4v Scaffolds by Polydopamine-Assisted Biomimetic Hydroxyapatite Coating. ACS Appl. Mater. Interfaces. 2015, 7(10), 5715–5724. DOI: 10.1021/acsami.5b00331.
  • Hedberg, Y. S.; Qian, B.; Shen, Z.; Virtanen, S.; Odnevall Wallinder, I. In vitro Biocompatibility of CoCrmo Dental Alloys Fabricated by Selective Laser Melting. Dent. Mater. 2014, 30(5), 525–534. DOI: 10.1016/j.dental.2014.02.008.
  • Hodgson, A. W. E.; Kurz, S.; Virtanen, S.; Fervel, V.; Olsson, C. O. A.; Mischler, S. Passive and Transpassive Behaviour of CoCrmo in Simulated Biological Solutions. Electrochim. Acta. 2004, 49(13), 2167–2178. DOI: 10.1016/j.electacta.2003.12.043.
  • Patntirapong, S.; Habibovic, P.; Hauschka, P. V. Effects of Soluble Cobalt and Cobalt Incorporated into Calcium Phosphate Layers on Osteoclast Differentiation and Activation. Biomaterials. 2009, 30(4), 548–555. DOI: 10.1016/j.biomaterials.2008.09.062.
  • Bandyopadhyay, A.; Shivaram, A.; Isik, M.; Avila, J. D.; Dernell, W. S.; Bose, S. Additively Manufactured Calcium Phosphate Reinforced CoCrmo Alloy: Bio-Tribological and Biocompatibility Evaluation for Load-Bearing Implants. Addit. Manuf. April, 2019, 28, 312–324. DOI: 10.1016/j.addma.2019.04.020.
  • Tower, S. S.; Medlin, D. J.; Bridges, R. L.; Cho, C. S. Corrosion of Polished Cobalt-Chrome Stems Presenting as Cobalt Encephalopathy. Arthroplast. Today. 2020, 6(4), 1022–1027. DOI: 10.1016/j.artd.2020.10.003.
  • Ye, C.; Zhang, C.; Zhao, J.; Dong, Y. Effects of Post-Processing on the Surface Finish, Porosity, Residual Stresses, and Fatigue Performance of Additive Manufactured Metals: A Review. J. Mater. Eng. Perform. 2021, 30(9), 6407–6425. DOI: 10.1007/s11665-021-06021-7.
  • Ma, L. W.; Chung, C. Y.; Tong, Y. X.; Zheng, Y. F. Properties of Porous TiNbzr Shape Memory Alloy Fabricated by Mechanical Alloying and Hot Isostatic Pressing. J. Mater. Eng. Perform. 2011, 20(4–5), 783–786. DOI: 10.1007/s11665-011-9913-4.
  • Cegan, T.; Pagac, M.; Jurica, J.; Skotnicova, K.; Hajnys, J.; Horsak, L.; Soucek, K.; Krpec, P. Effect of Hot Isostatic Pressing on Porosity and Mechanical Properties of 316 L Stainless Steel Prepared by the Selective Laser Melting Method. Mater. (Basel). 2020, 13(19), 1–26. DOI: 10.3390/ma13194377.
  • Lesyk, D. A.; Martinez, S.; Pedash, O. O.; Dzhemelinskyi, V. V.; Lamikiz, A. Porosity and Surface Defects Characterization of Hot Isostatically Pressed Inconel 718 Alloy Turbine Blades Printed by 3D Laser Metal Fusion Technology. MRS Adv. 2022, 7(9), 197–201. DOI: 10.1557/s43580-021-00187-x.
  • Tammas-Williams, S.; Withers, P. J.; Todd, I.; Prangnell, P. B. The Effectiveness of Hot Isostatic Pressing for Closing Porosity in Titanium Parts Manufactured by Selective Electron Beam Melting. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2016, 47(5), 1939–1946. DOI: 10.1007/s11661-016-3429-3.
  • Razavi, S. M. J.; Avanzini, A.; Cornacchia, G.; Giorleo, L.; Berto, F. Effect of Heat Treatment on Fatigue Behavior of As-Built Notched Co-Cr-Mo Parts Produced by Selective Laser Melting. Int. J. Fatigue. 2021, 142(July 2020), 105926. DOI: 10.1016/j.ijfatigue.2020.105926.
  • Li, H.; Wang, M.; Lou, D.; Xia, W.; Fang, X. Microstructural Features of Biomedical Cobalt–chromium–molybdenum (CoCrmo) Alloy from Powder Bed Fusion to Aging Heat Treatment. J. Mater. Sci. Technol. 2020, 45, 146–156. DOI: 10.1016/j.jmst.2019.11.031.
  • Sing, S. L.; Huang, S.; Yeong, W. Y. Effect of Solution Heat Treatment on Microstructure and Mechanical Properties of Laser Powder Bed Fusion Produced Cobalt-28chromium-6molybdenum. Mater. Sci. Eng. A. 2020, 769, 138511. DOI: 10.1016/j.msea.2019.138511.
  • Takaichi, A.; Kajima, Y.; Kittikundecha, N.; Htat, H. L.; Wai Cho, H. H.; Hanawa, T.; Yoneyama, T.; Wakabayashi, N. Effect of Heat Treatment on the Anisotropic Microstructural and Mechanical Properties of Co–cr–mo Alloys Produced by Selective Laser Melting. J. Mech. Behav. Biomed. Mater. 2020, 102, 103496. DOI: 10.1016/j.jmbbm.2019.103496.
  • Zhang, M.; Yang, Y.; Song, C.; Bai, Y.; Xiao, Z. An Investigation into the Aging Behavior of CoCrmo Alloys Fabricated by Selective Laser Melting. J. Alloys Compd. 2018, 750, 878–886. DOI: 10.1016/j.jallcom.2018.04.054.
  • Krasicka-Cydzik, E. Anodic Layer Formation on Titanium and Its Alloys for Biomedical Applications. Titan. Alloy. - Towar. Achiev. Enhanc. Prop. Divers. Appl. 2012. DOI: 10.5772/34395.
  • Arrés, M.; Salama, M.; Rechena, D.; Paradiso, P.; Reis, L.; Alves, M. M.; Botelho Do Rego, A. M.; Carmezim, M. J.; Vaz, M. F.; Deus, A. M., et al. Surface and Mechanical Properties of a Nanostructured Citrate Hydroxyapatite Coating on Pure Titanium. J. Mech. Behav. Biomed. Mater. April, 2020, 108, 103794. DOI: 10.1016/j.jmbbm.2020.103794.
  • Bistolfi, A.; Giustra, F.; Bosco, F.; Sabatini, L.; Aprato, A.; Bracco, P.; Bellare, A. Ultra-High Molecular Weight Polyethylene (UHMWPE) for Hip and Knee Arthroplasty: The Present and the Future. J. Orthop. April, 2021, 25, 98–106. DOI: 10.1016/j.jor.2021.04.004.
  • Chang, B. P.; Akil, H. M.; Nasir, R. M.; Nurdijati, S. Mechanical and Antibacterial Properties of Treated and Untreated Zinc Oxide Filled UHMWPE Composites. J. Thermoplast. Compos. Mater. 2011, 24(5), 653–667. DOI: 10.1177/0892705711399848.
  • Fang, L.; Gao, P.; Leng, Y. High Strength and Bioactive Hydroxyapatite Nano-Particles Reinforced Ultrahigh Molecular Weight Polyethylene. Compos. Part B Eng. 2007, 38(3), 345–351. DOI: 10.1016/j.compositesb.2006.05.004.
  • Macuvele, D. L. P.; Nones, J.; Matsinhe, J. V.; Lima, M. M.; Soares, C.; Fiori, M. A.; Riella, H. G. Advances in Ultra High Molecular Weight Polyethylene/hydroxyapatite Composites for Biomedical Applications: A Brief Review. Mater. Sci. Eng. C. 2017, 76, 1248–1262. DOI: 10.1016/j.msec.2017.02.070.
  • Xiong, D.; Lin, J.; Fan, D.; Jin, Z. Wear of Nano-TiO 2/UHMWPE Composites Radiated by Gamma Ray Under Physiological Saline Water Lubrication. J. Mater. Sci. Mater. Med. 2007, 18(11), 2131–2135. DOI: 10.1007/s10856-007-3199-y.
  • Lim, K. L. K.; Mohd Ishak, Z. A.; Ishiaku, U. S.; Fuad, A. M. Y.; Yusof, A. H.; Czigany, T.; Pukanzsky, B.; Ogunniyi, D. S. High Density Polyethylene/ultra High Molecular Weight Polyethylene Blend II. Effect of Hydroxyapatite on Processing, Thermal, and Mechanical Properties. J. Appl. Polym. Sci. 2006, 100(5), 3931–3942. DOI: 10.1002/app.22866.
  • Diani, J.; Gall, K. Finite Strain 3D Thermoviscoelastic Constitutive Model. Society. 2006, 1–10. DOI: 10.1002/pen.
  • Rezaei, M.; Shirzad, A.; Ebrahimi, N. G.; Kontopoulou, M. Surface Modification of Ultra-High-Molecular-Weight Polyethylene. II. Effect on the Physicomechanical and Tribological Properties of Ultra-High-Molecular-Weight Polyethylene/poly(ethylene Terephthalate) Composites. J. Appl. Polym. Sci. 2006, 99(5), 2352–2358. DOI: 10.1002/app.22688.
  • Xue, Y.; Wu, W.; Jacobs, O.; Schädel, B. Tribological Behaviour of UHMWPE/HDPE Blends Reinforced with Multi-Wall Carbon Nanotubes. Polym. Test. 2006, 25(2), 221–229. DOI: 10.1016/j.polymertesting.2005.10.005.
  • Rezaei, M.; Ebrahimi, N. G.; Kontopoulou, M. Thermal Properties, Rheology and Sintering of Ultra High Molecular Weight Polyethylene and Its Composites with Polyethylene Terephthalate. Polym. Eng. Sci. 2005, 45(5), 678–686. DOI: 10.1002/pen.20319.
  • Xiong, D. S.; Wang, N.; Lin, J. M.; Zhu, H. G.; Fan, D. L. Tribological Properties of UHMWPE Composites Filled with Nano-Powder of SiO2 Sliding Against Ti-6al-4V. Key Eng. Mater. 2005, 288– 289, 629–632. DOI: 10.4028/scientific.net/kem.288-289.629.
  • Zoo, Y. S.; An, J. W.; Lim, D. P.; Lim, D. S. Effect of Carbon Nanotube Addition on Tribological Behavior of UHMWPE. Tribol. Lett. 2004, 16(4), 305–309. DOI: 10.1023/B:TRIL.0000015206.21688.87.
  • Ruan, S. L.; Gao, P.; Yang, X. G.; Yu, T. X. Toughening High Performance Ultrahigh Molecular Weight Polyethylene Using Multiwalled Carbon Nanotubes. Polymer (Guildf.). 2003, 44(19), 5643–5654. DOI: 10.1016/S0032-3861(03)00628-1.
  • Kishore, N. V.; Nagendra, M.; Rao, T. V. Enhancement of Mechanical Properties of Uhmwpe Polymer by Nitrogen Ion Implantation. J. Manuf. Eng. 2020, 15(4), 101–109. DOI: 10.37255/jme.v15i4pp101-109.
  • Paladugu, S. R. M.; Ps, R. S. Mechanical and Wear Performances of UHMWPE Composites Used for Orthopaedic Applications– a Review. Mater. Today Proc. 2021. No. xxxx. DOI: 10.1016/j.matpr.2021.10.172.
  • Aliyu, I. K.; Mohammed, A. S.; Al-Qutub, A. Tribological Performance of Ultra High Molecular Weight Polyethylene Nanocomposites Reinforced with Graphene Nanoplatelets. Polym. Compos. 2019, 40(S2), E1301–E1311. DOI: 10.1002/pc.24975.
  • Jarosz, M.; Kapusta-Kołodziej, J.; Pawlik, A.; Syrek, K.; Sulka, G. D. Chapter 9 - Drug Delivery Systems Based on Titania Nanostructures; Elsevier Inc., 2017. DOi: 10.1016/B978-0-323-46143-6/00009-9.
  • Zwilling, V.; Aucouturier, M.; Darque-Ceretti, E. Anodic Oxidation of Titanium and TA6V Alloy in Chromic Media. An Electrochemical Approach. Electrochim. Acta. 1999, 45(6), 921–929. DOI: 10.1016/S0013-4686(99)00283-2.
  • Bandyopadhyay, A.; Shivaram, A.; Isik, M.; Avila, J. D.; Dernell, W. S.; Bose, S. Additively Manufactured Calcium Phosphate Reinforced CoCrmo Alloy: Bio-Tribological and Biocompatibility Evaluation for Load-Bearing Implants. Addit. Manuf. May, 2019, 28, 312–324. DOI: 10.1016/j.addma.2019.04.020.
  • Ducheyne, P.; Healy, K. E. The Effect of Plasma‐sprayed Calcium Phosphate Ceramic Coatings on the Metal Ion Release from Porous Titanium and Cobalt‐chromium Alloys. J. Biomed. Mater. Res. 1988, 22(12), 1137–1163. DOI: 10.1002/jbm.820221207.
  • Scott, K. T. Plasma Sprayed Coatings. 1988, 21, 1375–1381. DOI:10.1038/scientificamerican0988-112.
  • McPherson, R.; Gane, N.; Bastow, T. J. Structural Characterization of Plasma-Sprayed Hydroxylapatite Coatings. J. Mater. Sci. Mater. Med. 1995, 6(6), 327–334. DOI: 10.1007/BF00120300.
  • Kurzweg, H.; Heimann, R. B.; Troczynski, T. Adhesion of Thermally Sprayed Hydroxyapatite-Bond-Coat Systems Measured by a Novel Peel Test. J. Mater. Sci. Mater. Med. 1998, 9(1), 9–16. DOI: 10.1023/A:1008822309486.
  • Kim, H. M.; Himeno, T.; Kawashita, M.; Lee, J. H.; Kokubo, T.; Nakamura, T. Surface Potential Change in Bioactive Titanium Metal During the Process of Apatite Formation in Simulated Body Fluid. J. Biomed. Mater. Res. Part A. 2003, 67(4), 1305–1309. DOI: 10.1002/jbm.a.20039.
  • Kim, H. M.; Kaneko, H.; Kawashita, M.; Kokubo, T.; Nakamura, T. Mechanism of Apatite Formation on Anodically Oxidized Titanium Metal in Simulated Body Fluid. Key Eng. Mater. 2004, 254 –256, 741–744. DOI:10.4028/scientific.net/kem.254-256.741.
  • Li, P.; Ducheyne, P. Quasi-Biological Apatite Film Induced by Titanium in a Simulated Body Fluid. J. Biomed. Mater. Res. 1998, 41(3), 341–348. DOI: 10.1002/(SICI)1097-4636(19980905)41:3<341:AID-JBM1>3.0.CO;2-C.
  • Yao, C.; Lu, J.; Webster, T. J. Titanium and Cobalt-Chromium Alloys for Hips and Knees. Biomater. Artif. Organs. 2010, 34–55. DOI: 10.1533/9780857090843.1.34.
  • Catanio Bortolan, C.; Paternoster, C.; Turgeon, S.; Paoletti, C.; Cabibbo, M.; Lecis, N.; Mantovani, D. Plasma-Immersion Ion Implantation Surface Oxidation on a Cobalt-Chromium Alloy for Biomedical Applications. Biointerphases. 2020, 15(4), 041004. DOI: 10.1116/6.0000278.
  • Robin, A.; Bernardes de Almeida Ribeiro, M.; Luiz Rosa, J.; Zenhei Nakazato, R.; Borges Silva, M. Formation of TiO2 Nanotube Layer by Anodization of Titanium in Ethylene Glycol-H2O Electrolyte. J. Surf. Eng. Mater. Adv. Technol. 2014, 04(03), 123–130. DOI: 10.4236/jsemat.2014.43016.
  • Marijana et al., Novel in-situ synthesis of hydroxyapatite/ titanium oxide composite coatings on titanium by simultaneous anodization / anaphoretic electrodeposition VI International congress “Engineering, Environment and Materials in Processing Industry”. 2019, 1, 630–634.
  • Sopha, H.; Norikawa, Y.; Motola, M.; Hromadko, L.; Rodriguez-Pereira, J.; Cerny, J.; Nohira, T.; Yasuda, K.; Macak, J. M. Anodization of Electrodeposited Titanium Films Towards TiO2 Nanotube Layers. Electrochem. Commun. 2020, 118, 106788. DOI: 10.1016/j.elecom.2020.106788.
  • Zhang, K.; Cao, S.; Li, C.; Qi, J.; Jiang, L.; Zhang, J.; Zhu, X. Rapid Growth of TiO2 Nanotubes Under the Compact Oxide Layer: Evidence Against the Digging Manner of Dissolution Reaction. Electrochem. Commun. May, 2019, 103, 88–93. DOI: 10.1016/j.elecom.2019.05.015.
  • Kumar, S. Selective Laser Sintering/melting; Elsevier. 2014; Vol. 10. DOI: 10.1016/B978-0-08-096532-1.01003-7.
  • AlMangour, B.; Luqman, M.; Grzesiak, D.; Al-Harbi, H.; Ijaz, F. Effect of Processing Parameters on the Microstructure and Mechanical Properties of Co–cr–mo Alloy Fabricated by Selective Laser Melting. Mater. Sci. Eng. A. June, 2020, 792, 139456. DOI: 10.1016/j.msea.2020.139456.
  • Sabuj, S. R.; Hamamura, M. Random Cognitive Radio Network Performance in Rayleigh-Lognormal Environment. 2017 14th IEEE Annu. Consum. Commun. Netw. Conf. CCNC 2017. 2017, 6(3), 992–997. DOI: 10.1109/CCNC.2017.7983268.
  • Liu, S.; Guo, H. Balling Behavior of Selective Laser Melting (SLM) Magnesium Alloy. Mater. (Basel). 2020, 13(16). DOI: 10.3390/MA13163632.
  • Glardon, R.; Karapatis, N.; Romano, V. Influence of Nd: YAG Parameters on the Selective Laser Sintering of Metallic Powders. CIRP Ann. - Manuf. Technol. 2001, 50(1), 133–136. DOI: 10.1016/S0007-8506(07)62088-5.
  • Savalani, M.; Hao, L.; Harris, R. A. Evaluation of CO2 and Nd:Yag Lasers for the Selective Laser Sintering of HAPEX. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2006, 220(2), 171–182. DOI: 10.1243/095440505X32986.
  • Rombouts, M.; Kruth, J. P.; Froyen, L.; Mercelis, P. The Analysis of Flowering Phenology of Clones in Guiyang Pinus Massoniana Second-Generation Seed Orchard. CIRP Ann. 2006, 55(1), 187–192. DOI: https://doi.org/10.1016/S0007-8506(07)60395-3.
  • Liu, J.; Song, Y.; Chen, C.; Wang, X.; Li, H.; Zhou, C.; Wang, J.; Guo, K.; Sun, J. Effect of Scanning Speed on the Microstructure and Mechanical Behavior of 316L Stainless Steel Fabricated by Selective Laser Melting. Mater. Des. 2020, 186, 108355. DOI: 10.1016/j.matdes.2019.108355.
  • Ngo, T. D.; Kashani, A.; Imbalzano, G.; Nguyen, K. T. Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. Part B Eng. 2018, 143(December 2017), 172–196. DOI: 10.1016/j.compositesb.2018.02.012.
  • Kruth, J. P.; Kumar, S.; Van Vaerenbergh, J. Study of Laser-Sinterability of Ferro-Based Powders. Rapid Prototyp. J. 2005, 11(5), 287–292. DOI: 10.1108/13552540510623594.
  • Cho, H. H. W.; Takaichi, A.; Kajima, Y.; Htat, H. L.; Kittikundecha, N.; Hanawa, T.; Wakabayashi, N. Effect of Post‐heat Treatment Cooling Conditions on Microstructures and Fatigue Properties of Cobalt Chromium Molybdenum Alloy Fabricated Through Selective Laser Melting. Metals (Basel). 2021, 11(7). DOI: 10.3390/met11071005.
  • Mirzaali, M. J.; Zadpoor, A. A.; Bed, P. Lattice Structures Made by Laser Powder Bed Fusion Waste Resources Recycling in Achiev- Ing Economic and Environmental Sus- Tainability : Review on Wood Waste In- Dustry. 2021.
  • Gupta, K. P. The Co-Cr-Mo (Cobalt-Chromium-Molybdenum) System. J. Phase Equilibria Diffus. 2005, 26(1), 87–92. DOI: 10.1361/15477030522608.
  • Koizumi, Y.; Suzuki, S.; Yamanaka, K.; Lee, B. S.; Sato, K.; Li, Y.; Kurosu, S.; Matsumoto, H.; Chiba, A. Strain-Induced Martensitic Transformation Near Twin Boundaries in a Biomedical Co-Cr-Mo Alloy with Negative Stacking Fault Energy. Acta Mater. 2013, 61(5), 1648–1661. DOI: 10.1016/j.actamat.2012.11.041.
  • McKellop, H.; Clarke, I.; Markolf, K.; Amstutz, H. Friction and Wear Properties of Polymer, Metal, and Ceramic Prosthetic Joint Materials Evaluated on a Multichannel Screening Device. J. Biomed. Mater. Res. 1981, 15(5), 619–653. DOI: 10.1002/jbm.820150503.
  • Singh, R. K.; Gangwar, S. An Assessment of Biomaterials for Hip Joint Replacement. Int. J. Eng. Sci. Technol. 2021, 13(1), 25–31. DOI: 10.4314/ijest.v13i1.4s.
  • Wimmer, M. A.; Radice, S.; Janssen, D.; Fischer, A. Fretting-Corrosion of CoCr-Alloys Against TiAl6v4: The Importance of Molybdenum in Oxidative Biological Environments. Wear. 2021, 477(September 2020), 203813. DOI: https://doi.org/10.1016/j.wear.2021.203813.
  • Redhwi, I.; Lan, T.; Padalkar, S.; Shrotriya, P. Picosecond Laser Based Additive Manufacturing of Hydroxyapatite Coatings on Cobalt Chromium Surfaces. Procedia Manuf. January, 2018, 26, 125–131. DOI: 10.1016/j.promfg.2018.07.015.
  • Niespodziana, K.; Jurczyk, K.; Jakubowicz, J.; Jurczyk, M. Fabrication and Properties of Titanium-Hydroxyapatite Nanocomposites. Mater. Chem. Phys. 2010, 123(1), 160–165. DOI: 10.1016/j.matchemphys.2010.03.076.
  • D.F. Williams, Review Tissue-Biomaterial Interactions. J. Mater. Sci. 1987, 22, 3421–3445.
  • Ungureanu, C.; Dumitriu, C.; Popescu, S.; Enculescu, M.; Tofan, V.; Popescu, M.; Pirvu, C. Enhancing Antimicrobial Activity of TiO2/ti by Torularhodin Bioinspired Surface Modification. Bioelectrochemistry. 2016, 107, 14–24. DOI: 10.1016/j.bioelechem.2015.09.001.
  • Lin, C. M.; Yen, S. K. Characterization and Bond Strength of Electrolytic Ha/tio2 Double Layers for Orthopaedic Applications. J. Mater. Sci. Mater. Med. 2005, 16(10), 889–897. DOI: 10.1007/s10856-005-4423-2.
  • De Flora, S.; Camoirano, A.; Micale, R. T.; La Maestra, S.; Savarino, V.; Zentilin, P.; Marabotto, E.; Suh, M.; Proctor, D. M. Reduction of Hexavalent Chromium by Fasted and Fed Human Gastric Fluid. I. Chemical Reduction and Mitigation of Mutagenicity. Toxicol. Appl. Pharmacol. 2016, 306, 113–119. DOI: 10.1016/j.taap.2016.07.004.
  • Zhang, X. H.; Zhang, X.; Wang, X. C.; Jin, L. F.; Yang, Z. P.; Jiang, C. X.; Chen, Q.; Ren, X. B.; Cao, J. Z.; Wang, Q., et al. Chronic Occupational Exposure to Hexavalent Chromium Causes DNA Damage in Electroplating Workers. BMC Public Health. 2011, 11(1). DOI: 10.1186/1471-2458-11-224.
  • Kalidhasan, S.; Santhana Krishna Kumar, A.; Rajesh, V.; Rajesh, N. The Journey Traversed in the Remediation of Hexavalent Chromium and the Road Ahead Toward Greener Alternatives-A Perspective. Coord. Chem. Rev. 2016, 317, 157–166. DOI: 10.1016/j.ccr.2016.03.004.
  • Dianyi Yu, M. D. Chromium (Cr) Toxicity. U.S. Dep. Heal. Hum. Serv. Agency Toxic Subst. Dis. Regist. Div. Toxicol. Environ. Med. Environ. Med. Educ. Serv. Branch, 317. 2019, 1–67.
  • Lucchetti, M. C.; Fratto, G.; Valeriani, F.; De Vittori, E.; Giampaoli, S.; Papetti, P.; Romano Spica, V.; Manzon, L. Cobalt-Chromium Alloys in Dentistry: An Evaluation of Metal Ion Release. J. Prosthet. Dent. 2015, 114(4), 602–608. DOI: 10.1016/j.prosdent.2015.03.002.
  • Holm, C.; Morisbak, E.; Kalfoss, T.; Dahl, J. E. In vitro Element Release and Biological Aspects of Base–metal Alloys for Metal-Ceramic Applications. Acta Biomater. Odontol. Scand. 2015, 1(2–4), 70–75. DOI: 10.3109/23337931.2015.1069714.
  • Achmad, R. T.; Budiawan; Auerkari, E. I. Effects of Chromium on Human Body. Annu. Res. Rev. Biol. 2017, 13(2), 1–8. DOI: 10.9734/ARRB/2017/33462.
  • Yang, X.; Xiang, N.; Wei, B. Effect of Fluoride Content on Ion Release from Cast and Selective Laser Melting-Processed Co-Cr-Mo Alloys. J. Prosthet. Dent. 2014, 112(5), 1212–1216. DOI: 10.1016/j.prosdent.2013.12.022.
  • Cumings, J. N. Biochemical. Aspects. 1962, 55. DOI: 10.5005/jp/books/11431_8.
  • Devoy, J.; Géhin, A.; Müller, S.; Melczer, M.; Remy, A.; Antoine, G.; Sponne, I. Evaluation of Chromium in Red Blood Cells as an Indicator of Exposure to Hexavalent Chromium: An in vitro Study. Toxicol. Lett. 2016, 255, 63–70. DOI: 10.1016/j.toxlet.2016.05.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.