408
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Welding of Super Duplex Stainless Steel and Austenitic Stainless Steel:#xd; Influence and Role of Bicomponent Fluxes

ORCID Icon & ORCID Icon
Pages 434-448 | Received 17 May 2022, Accepted 11 Jul 2022, Published online: 31 Jul 2022

References

  • Zhang, J.; Huang, Y.; Fan, D.; Zhao, J.; Huang, J.; Yu, X.; Liu, S. Microstructure and Performances of Dissimilar Joints Between 12cr2mo1r Steel and 06cr18ni11ti Austenitic Stainless Steel Joined by AA-TIG Welding. J. Manuf. Process. 2020, 60(October), 96–106. DOI: 10.1016/j.jmapro.2020.10.048.
  • Vashishtha, H.; Taiwade, R. V.; Khatirkar, R. K.; Dhoble, A. S. Effect of Austenitic Fillers on Microstructural and Mechanical Properties of Ultra-Low Nickel Austenitic Stainless Steel. Sci. Technol. Weld. Join. 2016, 21(4), 331–337. DOI: 10.1080/13621718.2015.1112604.
  • Verma, J.; Taiwade, R. V. Dissimilar Welding Behavior of 22% Cr Series Stainless Steel with 316L and Its Corrosion Resistance in Modified Aggressive Environment. J. Manuf. Process. 2016, 24, 1–10. DOI: 10.1016/j.jmapro.2016.07.001.
  • Verma, J.; Taiwade, R. V. Effect of Austenitic and Austeno-Ferritic Electrodes on 2205 Duplex and 316L Austenitic Stainless Steel Dissimilar Welds. J. Mater. Eng. Perform. 2016, 25(11), 4706–4717. DOI: 10.1007/s11665-016-2329-4.
  • Paulraj, P.; Garg, R. Effect of Welding Parameters on Pitting Behavior of GTAW of DSS and Super DSS Weldments. Eng. Sci. Technol. Int. J. 2016, 19(2), 1076–1083. DOI: 10.1016/j.jestch.2016.01.013.
  • Fande, A. W.; Taiwade, R. V.; Raut, L. Development of Activated Tungsten Inert Gas Welding and Its Current Status: A Review. Mater. Manuf. Process. 2022, 00(00), 1–36. DOI: 10.1080/10426914.2022.2039695.
  • Pandya, D.; Badgujar, A.; Ghetiya, N. A Novel Perception Toward Welding of Stainless Steel by Activated TIG Welding: A Review. Mater. Manuf. Process. 2021, 36(8), 877–903. DOI: 10.1080/10426914.2020.1854467.
  • Patel, D.; Jani, S. Techniques to Weld Similar and Dissimilar Materials by ATIG Welding - an Overview. Mater. Manuf. Process. 2021, 36(1), 1–6. DOI: 10.1080/10426914.2020.1802040.
  • Vasantharaja, P.; Vasudevan, M.; Palanichamy, P. Effect of Welding Processes on the Residual Stress and Distortion in Type 316LN Stainless Steel Weld Joints. J. Manuf. Process. 2015, 19, 187–193. DOI: 10.1016/j.jmapro.2014.09.004.
  • Huang, H.-Y. Argon-Hydrogen Shielding Gas Mixtures for Activating Flux-Assisted Gas Tungsten Arc Welding. Metall. Mater. Trans. A. 2010, 41(11), 2829–2835. DOI: 10.1007/s11661-010-0361-9.
  • Albaijan, I.; Hedhibi, A. C.; Touileb, K.; Djoudjou, R.; Ouis, A.; Alrobei, H. Effect of Binary Oxide Flux on Weld Shape, Mechanical Properties and Corrosion Resistance of 2205 Duplex Stainless Steel Welds. Adv. Mater. Sci. Eng. 2020, 2020. DOI: 10.1155/2020/5842741.
  • Patel, N. P.; Badheka, V. J.; Vora, J. J.; Upadhyay, G. H. Effect of Oxide Fluxes in Activated TIG Welding of Stainless Steel 316LN to Low Activation Ferritic/martensitic Steel (LAFM) Dissimilar Combination. Trans. Indian Inst. Met. 2019, 72(10), 2753–2761. DOI: 10.1007/s12666-019-01752-7.
  • Fande, A. W. Microstructure, Mechanical, and Electrochemical Evaluation of Chrome-Manganese Stainless Steel Activated Tungsten Inert Gas Welded Joint. J. Mater. Eng. Perform. 2022. DOI: 10.1007/s11665-022-06894-2.
  • Fande, A. W.; Taiwade, R. V.; Raut, L. Development of Activated Tungsten Inert Gas Welding and Its Current Status: A Review. Mater. Manuf. Process. 2022, 37(8), 839–874. DOI: 10.1080/10426914.2022.2039695.
  • Korra, N. N.; Vasudevan, M.; Balasubramanian, K. R. Multi-Objective Optimization of Activated Tungsten Inert Gas Welding of Duplex Stainless Steel Using Response Surface Methodology. Int. J. Adv. Manuf. Technol. 2015, 77(1–4), 67–81. DOI: 10.1007/s00170-014-6426-y.
  • Nanavati, P. K.; Badheka, V. J.; Idhariya, J.; Solanki, D. Comparisons of Different Oxide Fluxes in Activated Gas Tungsten Arc Welding of Duplex Stainless Steels for Improved Depth of Penetration and Pitting Corrosion Resistance. Adv. Mater. Process. Technol. 2021, 00(00), 1–18. DOI: 10.1080/2374068X.2021.1916283.
  • Venkatesan, G.; Muthupandi, V.; Justine, J. Activated TIG Welding of AISI 304L Using Mono- and Tri-Component Fluxes. Int. J. Adv. Manuf. Technol. 2017, 93(1–4), 329–336. DOI: 10.1007/s00170-016-9002-9.
  • Tathgir, S.; Bhattacharya, A.; Bera, T. K. Influence of Current and Shielding Gas in TiO2 Flux Activated Tig Welding on Different Graded Steels. Mater. Manuf. Process. 2015, 30(9), 1115–1123. DOI: 10.1080/10426914.2014.973591.
  • Sharma, P.; Dwivedi, D. K. Study on Flux Assisted-Tungsten Inert Gas Welding of Bimetallic P92 Martensitic Steel-304H Austenitic Stainless Steel Using SiO2–tio2 Binary Flux. Int. J. Press. Vessel. Pip. 2021, 192(October 2020), 104423. DOI: 10.1016/j.ijpvp.2021.104423.
  • Lin, H. L.; Wu, T. M. Effects of Activating Flux on Weld Bead Geometry of Inconel 718 Alloy TIG Welds. Mater. Manuf. Process. 2012, 27(12), 1457–1461. DOI: 10.1080/10426914.2012.677914.
  • Vidyarthy, R. S.; Dwivedi, D. K. Activating Flux Tungsten Inert Gas Welding for Enhanced Weld Penetration. J. Manuf. Process. 2016, 22, 211–228. DOI: 10.1016/j.jmapro.2016.03.012.
  • Lin, H. L. Optimization of Inconel 718 Alloy Welds in an Activated GTA Welding via Taguchi Method, Gray Relational Analysis, and a Neural Network. Int. J. Adv. Manuf. Technol. 2013, 67(1–4), 939–950. DOI: 10.1007/s00170-012-4538-9.
  • Dhandha, K. H.; Badheka, V. J. Comparison of Mechanical and Metallurgical Properties of Modified 9cr–1mo Steel for Conventional TIG and A-TIG Welds. Trans. Indian Inst. Met. 2019, 72(7), 1809–1821. DOI: 10.1007/s12666-019-01657-5.
  • Shukla, S.; Patil, A. P.; Tandon, V. The Effect of Cold Work by Rolling on Electrochemical Behaviour of Cr-Mn Austenitic Stainless Steel in Chloride Environment. Mater. Res. Express. 2018, 5, 6. DOI: 10.1088/2053-1591/aac974.
  • Maurya, A. K.; Pandey, C.; Chhibber, R. Dissimilar Welding of Duplex Stainless Steel with Ni Alloys: A Review. Int. J. Press. Vessel. Pip. 2021, 192(May), 104439. DOI: 10.1016/j.ijpvp.2021.104439.
  • Verma, J.; Taiwade, R. V.; Khatirkar, R. K.; Kumar, A. A Comparative Study on the Effect of Electrode on Microstructure and Mechanical Properties of Dissimilar Welds of 2205 Austeno-Ferritic and 316L Austenitic Stainless Steel. Mater. Trans. 2016, 57(4), 494–500. DOI: 10.2320/matertrans.M2015321.
  • Paulraj, P.; Garg, R. Effect of Intermetallic Phases on Corrosion Behavior and Mechanical Properties of Duplex Stainless Steel and Super-Duplex Stainless Steel. Adv. Sci. Technol. Res. J. 2015, 9(27), 87–105. DOI: 10.12913/22998624/59090.
  • Verma, J.; Taiwade, R. V.; Kataria, R.; Kumar, A. Welding and Electrochemical Behavior of Ferritic AISI 430 and Austeno-Ferritic UNS 32205 Dissimilar Welds. J. Manuf. Process. 2018, 34(May), 292–302. DOI: 10.1016/j.jmapro.2018.06.019.
  • Verma, J.; Taiwade, R. V. Effect of Welding Processes and Conditions on the Microstructure, Mechanical Properties and Corrosion Resistance of Duplex Stainless Steel Weldments—a Review. J. Manuf. Process. 2017, 25, 134–152. DOI: 10.1016/j.jmapro.2016.11.003.
  • Vashishtha, H.; Taiwade, R. V.; Sharma, S.; Marodkar, A. S. Microstructural and Mechanical Properties Evolution of Bimetallic Cr-Ni and Cr-Mn-Ni Stainless Steel Joints. Metallogr. Microstruct. Anal. 2019, 8(3), 359–369. DOI: 10.1007/s13632-019-00549-w.
  • Verma, J.; Taiwade, R. V.; Khatirkar, R. K.; Sapate, S. G.; Gaikwad, A. D. M. Mechanical and Intergranular Corrosion Behavior of Dissimilar DSS 2205 and ASS 316L Shielded Metal Arc Welds. Trans. Indian Inst. Met. 2017, 70(1), 225–237. DOI: 10.1007/s12666-016-0878-8.
  • Kotecki, D. J.; Siewert, T. A. WRC-1992 Constitution Diagram for Stainless Steel Weld Metals : A Modification of the WRC-1988 Diagram. AWS Annu. Meet. 1992, 171–178.
  • Devendranath Ramkumar, K.; Bajpai, A.; Raghuvanshi, S.; Singh, A.; Chandrasekhar, A.; Arivarasu, M.; Arivazhagan, N. Investigations on Structure-Property Relationships of Activated Flux TIG Weldments of Super-Duplex/austenitic Stainless Steels. Mater. Sci. Eng. A. 2015, 638, 60–68. DOI: 10.1016/j.msea.2015.04.041.
  • Rajasekhar, K.; Harendranath, C. S.; Raman, R.; Kulkarni, S. D. Microstructural Evolution During Solidification of Austenitic Stainless Steel Weld Metals: A Color Metallographic and Electron Microprobe Analysis Study. Mater. Charact. 1997, 38(2), 53–65. DOI: 10.1016/s1044-5803(97)80024-1.
  • Tandon, V.; Thombre, M. A.; Patil, A. P.; Taiwade, R. V.; Vashishtha, H. Effect of Heat Input on the Microstructural, Mechanical, and Corrosion Properties of Dissimilar Weldment of Conventional Austenitic Stainless Steel and Low-Nickel Stainless Steel. Metallogr. Microstruct. Anal. 2020, 9(5), 668–677. DOI: 10.1007/s13632-020-00681-y.
  • Baghel, A.; Sharma, C.; Rathee, S.; Srivastava, M. Influence of Activated Flux on Micro-Structural and Mechanical Properties of AISI 1018 During MIG Welding. Mater. Today Proc. 2021, 47, 6947–6952. DOI: 10.1016/j.matpr.2021.05.210.
  • Vasudevan, M. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels. J. Mater. Eng. Perform. 2017, 26(3), 1325–1336. DOI: 10.1007/s11665-017-2517-x.
  • Kim, T. K.; Han, C. H.; Kim, S. H.; Kwon, H. K.; Kim, D. J. Effects of Ferrite Content on the Tensile Strength and Impact Toughness of 2.25cr-1mo-0.25V Steels. Mater. Sci. Forum. 2010, 654656, 520–523. 10.4028/www.scientific.net/MSF.654-656.520.
  • Kulkarni, A.; Dwivedi, D. K.; Vasudevan, M. Microstructure and Mechanical Properties of A-TIG Welded AISI 316L SS-Alloy 800 Dissimilar Metal Joint. Mater. Sci. Eng. A. 2020, 790, 139685. DOI: 10.1016/j.msea.2020.139685.
  • Bayoumi, F. M.; Ghanem, W. A. Effect of Nitrogen on the Corrosion Behavior of Austenitic Stainless Steel in Chloride Solutions. Mater. Lett. 2005, 59(26), 3311–3314. DOI: 10.1016/j.matlet.2005.05.063.
  • Majidi, A. P.; Streicher, M. A. Double Loop Reactivation Method for Detecting Sensitization in AISI 304 Stainless Steels. Corrosion. 1984, 40(11), 584–593. DOI: 10.5006/1.3581921.
  • Taiwade, R. V.; Shukla, R.; Vashishtha, H.; Ingle, A. V.; Dayal, R. K. Effect of Grain Size on Degree of Sensitization of Chrome-Manganese Stainless Steel. ISIJ Int. 2013, 53(12), 2206–2212. DOI: 10.2355/isijinternational.53.2206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.