1,267
Views
0
CrossRef citations to date
0
Altmetric
Review

Recycling of spent lithium-iron phosphate batteries: toward closing the loop

ORCID Icon, ORCID Icon & ORCID Icon
Pages 135-150 | Received 11 Jul 2022, Accepted 22 Sep 2022, Published online: 04 Nov 2022

References

  • Krug, T. Concluding Commentary to the Special Issue: ‘Climate Change Communication and the IPCC’. Clim. Change. 2022, 171(3–4), 23. DOI: 10.1007/s10584-021-03255-1.
  • Thomson, I.; Charnock, R. Engaging with the IPCC on Climate Finance: A Call to Action and Platform for Social and Environmental Accounting Scholars. Soc. Environ. Account. J. 2022, 42(1–2), 1–10. DOI: 10.1080/0969160X.2022.2085131.
  • Mansouri Kouhestani, F.; Byrne, J.; Johnson, D.; Spencer, L.; Brown, B.; Hazendonk, P.; Scott, J. Multi-Criteria PSO-Based Optimal Design of Grid-Connected Hybrid Renewable Energy Systems. Int. J. Green Energy. 2020, 17(11), 617–631. DOI: 10.1080/15435075.2020.1779072.
  • Raj, T.; Chandrasekhar, K.; Kumar, A. N.; Sharma, P.; Pandey, A.; Jang, M.; Jeon, B.-H.; Varjani, S.; Kim, S.-H. Recycling of Cathode Material from Spent Lithium-Ion Batteries: Challenges and Future Perspectives. J. Hazard. Mater. 2022, 429, 128312. DOI: 10.1016/j.jhazmat.2022.128312.
  • Fan, E.; Li, L.; Wang, Z.; Lin, J.; Huang, Y.; Yao, Y.; Chen, R.; Wu, F. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chem. Rev. 2020, 120(14), 7020–7063. DOI: 10.1021/acs.chemrev.9b00535.
  • Pickett, L.; Winnett, J.; Carver, D.; Bolton, P. Electr. Veh. Infrastruct. 2021.
  • Ma, J.; Li, Y.; Grundish, N. S.; Goodenough, J. B.; Chen, Y.; Guo, L.; Peng, Z.; Qi, X.; Yang, F.; Qie, L., et al. The 2021 Battery Technology Roadmap. J. Phys D: Appl Phys. 2021, 54(18), 183001. DOI: 10.1088/1361-6463/abd353.
  • Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S., et al. Recycling Lithium-Ion Batteries from Electric Vehicles. Nature. 2019, 575(7781), 75–86. DOI: 10.1038/s41586-019-1682-5.
  • Wu, X.; Ma, J.; Wang, J.; Zhang, X.; Zhou, G.; Liang, Z. Progress, Key Issues, and Future Prospects for Li-Ion Battery Recycling. Glob. Challenges. 2022, 2200067. DOI:10.1002/gch2.202200067.
  • Qiao, H.; Wei, Q. 10 - Functional Nanofibers in Lithium-Ion Batteries. In Woodhead Publishing Series in Textiles; Wei, Q.-B.-T.-F.-N. Their, A., Eds.; Woodhead Publishing, 2012; pp. 197–208. DOI: 10.1533/9780857095640.2.197.
  • Tkaczyk, A. H.; Bartl, A.; Amato, A.; Lapkovskis, V.; Petranikova, M. Sustainability Evaluation of Essential Critical Raw Materials: Cobalt, Niobium, Tungsten and Rare Earth Elements. J. Phys D: Appl Phys. 2018, 51(20), 203001. DOI: 10.1088/1361-6463/aaba99.
  • Forte, F.; Pietrantonio, M.; Pucciarmati, S.; Puzone, M.; Fontana, D. Lithium Iron Phosphate Batteries Recycling: An Assessment of Current Status. Crit. Rev. Environ. Sci. Technol. 2021, 51(19), 2232–2259. DOI: 10.1080/10643389.2020.1776053.
  • Britton, D. L. The Lightweight Nickel Fiber Electrode for Nickel-Based Battery Systems. Mater. Manuf. Process. 1997, 12(3), 429–436. DOI: 10.1080/10426919708935156.
  • Manthiram, A. A Reflection on Lithium-Ion Battery Cathode Chemistry. Nat. Commun. 2020, 11(1), 1550. DOI: 10.1038/s41467-020-15355-0.
  • Guo, Y.; Li, F.; Zhu, H.; Li, G.; Huang, J.; He, W. Leaching Lithium from the Anode Electrode Materials of Spent Lithium-Ion Batteries by Hydrochloric Acid (HCl). Waste Manag. 2016, 51, 227–233. DOI: 10.1016/j.wasman.2015.11.036.
  • Tan, Q.; Li, J. Recycling Metals from Wastes: A Novel Application of Mechanochemistry. Environ. Sci. Technol. 2015, 49(10), 5849–5861. DOI: 10.1021/es506016w.
  • Zhang, X.; Yan, G. Estimating SOC and SOH of Lithium Battery Based on Nano Material. Ferroelectrics. 2021, 580(1), 112–128. DOI: 10.1080/00150193.2021.1905731.
  • Wang, H.; Cui, L.-F.; Yang, Y.; Sanchez Casalongue, H.; Robinson, J. T.; Liang, Y.; Cui, Y.; Dai, H. Mn3o4−graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. J. Am. Chem. Soc. 2010, 132(40), 13978–13980. DOI: 10.1021/ja105296a.
  • Zhang, W. X.; Wang, H.; Zhao, P.; He, C. Preparation of Cluster-Like SnS/SnO2/C Nanoparticle with Enhanced Electrochemical Performance for Lithium-Ion Batteries. Ionics (Kiel). 2021, 27(5), 1919–1927. DOI: 10.1007/s11581-021-03984-4.
  • Wu, J.; Jin, G.; Chen, Y.; Wu, P.; Li, Y.; Liu, Y.-N. Tin Nanoparticle/3D Framework Carbon Composite Derived from Sodium Citrate as the Stable Anode of Lithium-Ion Batteries. Ionics (Kiel). 2021, 27(3), 1003–1011. DOI: 10.1007/s11581-020-03886-x.
  • Li, Y.; Duan, C. N.; Jiang, Z.; Bin Zhou, X.; Wang, Y. CuO/RGO Nanocomposite as an Anode Material for High-Performance Lithium-Ion Batteries. Mater. Res. Express. 2021, 8(5), 55505. DOI: 10.1088/2053-1591/abfe2f.
  • Zamani, N.; Modarresi-Alam, A. R.; Noroozifar, M. Synthesis and Application of Phosphorus/co3o4–CuO Hybrid as High-Performance Anode Materials for Lithium-Ion Batteries. ACS Omega. 2018, 3(4), 4620–4630. DOI: 10.1021/acsomega.7b01153.
  • Sandhya, C. P.; John, B.; Gouri, C. Lithium Titanate as Anode Material for Lithium-Ion Cells: A Review. Ionics (Kiel). 2014, 20(5), 601–620. DOI: 10.1007/s11581-014-1113-4.
  • Ordoñez, J.; Gago, E. J.; Girard, A. Processes and Technologies for the Recycling and Recovery of Spent Lithium-Ion Batteries. Renew. Sustain. Energy Rev. 2016, 60, 195–205. DOI: 10.1016/j.rser.2015.12.363.
  • Kwade, A.; Diekmann, J. Recylcing of Lithium-Ion Batteries; Switzerland: Springer, 2018.
  • Teng, X.; Xu, H.; Liu, Q.; Shi, L.; Gai, L.; Wang, L.; Yang, Y.; Wu, F. The Influence of Conductive Additives on the Performance of a SiO/C Composite Anode in Lithium-Ion Batteries. New Carbon Mater. 2017, 32(6), 572–580. DOI: 10.1016/S1872-5805(17)60138-0.
  • Cheng, Q. Porous Graphene Sponge Additives for Lithium Ion Batteries with Excellent Rate Capability. Sci. Rep. 2017, 7(1), 925. DOI: 10.1038/s41598-017-01025-7.
  • Spahr, M. E.; Goers, D.; Leone, A.; Stallone, S.; Grivei, E. Development of Carbon Conductive Additives for Advanced Lithium Ion Batteries. J. Power Sources. 2011, 196(7), 3404–3413. DOI: 10.1016/j.jpowsour.2010.07.002.
  • Heelan, J.; Gratz, E.; Zheng, Z.; Wang, Q.; Chen, M.; Apelian, D.; Wang, Y. Current and Prospective Li-Ion Battery Recycling and Recovery Processes. JOM. 2016, 68(10), 2632–2638. DOI: 10.1007/s11837-016-1994-y.
  • Cheng, S.; Yuan, Z.; Ye, X.; Zhang, F.; Liu, J. Empirical Prediction Model for Li/SOCl2 Cells Based on the Accelerated Degradation Test. Microelectron. Reliab. 2015, 55(1), 101–106. DOI: 10.1016/j.microrel.2014.09.031.
  • Kannan, R.; Panos, E.; Hirschberg, S.; Kober, T. A Net-Zero Swiss Energy System by 2050: Technological and Policy Options for the Transition of the Transportation Sector. Futur. Foresight Sci. 2022, 4(3–4). DOI: 10.1002/ffo2.126.
  • Zeng, X.; Li, J.; Singh, N. Recycling of Spent Lithium-Ion Battery: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2014, 44(10), 1129–1165. DOI: 10.1080/10643389.2013.763578.
  • Rajaeifar, M. A.; Ghadimi, P.; Raugei, M.; Wu, Y.; Heidrich, O. Challenges and Recent Developments in Supply and Value Chains of Electric Vehicle Batteries: A Sustainability Perspective. Resour. Conserv. Recycl. 2022, 180, 106144. DOI: 10.1016/j.resconrec.2021.106144.
  • Egbue, O.; Long, S. Critical Issues in the Supply Chain of Lithium for Electric Vehicle Batteries. Eng. Manag. J. 2012, 24(3), 52–62. DOI: 10.1080/10429247.2012.11431947.
  • Cimprich, A.; Karim, K. S.; Young, S. B. Extending the Geopolitical Supply Risk Method: Material “Substitutability” Indicators Applied to Electric Vehicles and Dental X-Ray Equipment. Int. J. Life Cycle Assess. 2018, 23(10), 2024–2042. DOI: 10.1007/s11367-017-1418-4.
  • Koyamparambath, A.; Santillán-Saldivar, J.; McLellan, B.; Sonnemann, G. Supply Risk Evolution of Raw Materials for Batteries and Fossil Fuels for Selected OECD Countries (2000–2018). Resour. Policy. 2022, 75, 102465. DOI: 10.1016/j.resourpol.2021.102465.
  • Schrijvers, D.; Hool, A.; Blengini, G. A.; Chen, W.-Q.; Dewulf, J.; Eggert, R.; van Ellen, L.; Gauss, R.; Goddin, J.; Habib, K., et al. A Review of Methods and Data to Determine Raw Material Criticality. Resour. Conserv. Recycl. 2020, 155, 104617. DOI: 10.1016/j.resconrec.2019.104617.
  • Leader, A.; Gaustad, G.; Babbitt, C. The Effect of Critical Material Prices on the Competitiveness of Clean Energy Technologies. Mater. Renew. Sustain. Energy. 2019, 8(2), 8. DOI: 10.1007/s40243-019-0146-z.
  • Shen, Y.; Moomy, R.; Eggert, R. G. China’s Public Policies Toward Rare Earths, 1975–2018. Miner. Econ. 2020, 33(1–2), 127–151. DOI: 10.1007/s13563-019-00214-2.
  • Alonso, E.; Sherman, A. M.; Wallington, T. J.; Everson, M. P.; Field, F. R.; Roth, R.; Kirchain, R. E. Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies. Environ. Sci. Technol. 2012, 46(6), 3406–3414. DOI: 10.1021/es203518d.
  • Mancheri, N. A.; Sprecher, B.; Bailey, G.; Ge, J.; Tukker, A. Effect of Chinese Policies on Rare Earth Supply Chain Resilience. Resour. Conserv. Recycl. 2019, 142, 101–112. DOI: 10.1016/j.resconrec.2018.11.017.
  • Sverdrup, H. U.; Ragnarsdottir, K. V.; Koca, D. Integrated Modelling of the Global Cobalt Extraction, Supply, Price and Depletion of Extractable Resources Using the WORLD6 Model. Biophys. Econ. Resour. Qual. 2017, 2(1), 4. DOI: 10.1007/s41247-017-0017-0.
  • Ponrouch, A.; Palacín, M. R. Post-Li Batteries: Promises and Challenges. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377(2152), 20180297. DOI: 10.1098/rsta.2018.0297.
  • Deng, J.; Bae, C.; Denlinger, A.; Miller, T. Electric Vehicles Batteries: Requirements and Challenges. Joule. 2020, 4(3), 511–515. DOI: 10.1016/j.joule.2020.01.013.
  • Simon, B.; Ziemann, S.; Weil, M. Potential Metal Requirement of Active Materials in Lithium-Ion Battery Cells of Electric Vehicles and Its Impact on Reserves: Focus on Europe. Resour. Conserv. Recycl. 2015, 104, 300–310. DOI: https://doi.org/10.1016/j.resconrec.2015.07.011.
  • Richa, K.; Babbitt, C. W.; Gaustad, G.; Wang, X. A Future Perspective on Lithium-Ion Battery Waste Flows from Electric Vehicles. Resour. Conserv. Recycl. 2014, 83, 63–76. DOI: 10.1016/j.resconrec.2013.11.008.
  • Song, J.; Yan, W.; Cao, H.; Song, Q.; Ding, H.; Lv, Z.; Zhang, Y.; Sun, Z. Material Flow Analysis on Critical Raw Materials of Lithium-Ion Batteries in China. J. Clean. Prod. 2019, 215, 570–581. DOI: 10.1016/j.jclepro.2019.01.081.
  • Deetman, S.; Pauliuk, S.; van Vuuren, D. P.; van der Voet, E.; Tukker, A. Scenarios for Demand Growth of Metals in Electricity Generation Technologies, Cars, and Electronic Appliances. Environ. Sci. Technol. 2018, 52(8), 4950–4959. DOI: 10.1021/acs.est.7b05549.
  • Hao, H.; Geng, Y.; Tate, J. E.; Liu, F.; Chen, K.; Sun, X.; Liu, Z.; Zhao, F. Impact of Transport Electrification on Critical Metal Sustainability with a Focus on the Heavy-Duty Segment. Nat. Commun. 2019, 10(1), 5398. DOI: 10.1038/s41467-019-13400-1.
  • Ziemann, S.; Müller, D. B.; Schebek, L.; Weil, M. Modeling the Potential Impact of Lithium Recycling from EV Batteries on Lithium Demand: A Dynamic MFA Approach. Resour. Conserv. Recycl. 2018, 133, 76–85. DOI: 10.1016/j.resconrec.2018.01.031.
  • Shah, J. Boom in LFP Battery Use on the Way but Not Without Hurdles; Saur Energy International. https://www.saurenergy.com/opinion/boom-in-lfp-battery-use-on-the-way-but-not-without-hurdles
  • Hanley, S. Why Lithium Iron Phosphate Batteries May Be the Key to the EV Revolution; CleanTechnica. https://cleantechnica.com/2020/07/01/why-lithium-iron-phosphate-batteries-may-be-the-key-to-the-ev-revolution/
  • Hu, J.; Huang, W.; Yang, L.; Pan, F. Structure and Performance of the LiFepo4 Cathode Material: From the Bulk to the Surface. Nanoscale. 2020, 12(28), 15036–15044. DOI: 10.1039/D0NR03776A.
  • Li, J.; Ma, Z.-F. Past and Present of LiFepo4: From Fundamental Research to Industrial Applications. Chem. 2019, 5(1), 3–6. DOI: 10.1016/j.chempr.2018.12.012.
  • Rousse, G.; Rodriguez-Carvajal, J.; Patoux, S.; Masquelier, C. Magnetic Structures of the Triphylite LiFepo4 and of Its Delithiated Form FePo4. Chem. Mater. 2003, 15(21), 4082–4090. DOI: 10.1021/cm0300462.
  • Van der Ven, A.; Bhattacharya, J.; Belak, A. A. Understanding Li Diffusion in Li-Intercalation Compounds. Acc. Chem. Res. 2013, 46(5), 1216–1225. DOI: 10.1021/ar200329r.
  • Toprakci, O.; Toprakci, H. A. K.; Ji, L.; Zhang, X. Fabrication and Electrochemical Characteristics of LiFePO4 Powders for Lithium-Ion Batteries. KONA Powder Part. J. 2010, 28(0), 50–73. DOI: 10.14356/kona.2010008.
  • Li, L.; Wu, L.; Wu, F.; Song, S.; Zhang, X.; Fu, C.; Yuan, D.; Xiang, Y. Review—recent Research Progress in Surface Modification of LiFePO4Cathode Materials. J. Electrochem. Soc. 2017, 164(9), A2138–2150. DOI: 10.1149/2.1571709jes.
  • Zheng, J.; Hou, Y.; Duan, Y.; Song, X.; Wei, Y.; Liu, T.; Hu, J.; Guo, H.; Zhuo, Z.; Liu, L., et al. Janus Solid–Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries. Nano Lett. 2015, 15(9), 6102–6109. DOI: 10.1021/acs.nanolett.5b02379.
  • Astafev, E. Electrochemical Noise Measurement of a Lithium Iron(ii) Phosphate (LiFepo4) Rechargeable Battery. Instrum. Sci. Technol. 2020, 48(1), 75–85. DOI: 10.1080/10739149.2019.1658601.
  • Yin-Quan, H.; He-Ping, L.; Yi, Z.; Kai-Feng, L. Charging Method Research for Lithium Iron Phosphate Battery. Procedia. Eng. 2011, 15, 4367–4371. DOI: 10.1016/j.proeng.2011.08.820.
  • Benoit, C.; Franger, S. Chemistry and Electrochemistry of Lithium Iron Phosphate. J. Solid State Electrochem. 2008, 12(7–8), 987–993. DOI: 10.1007/s10008-007-0443-9.
  • Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho‐olivines as Positive‐electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997, 144(4), 1188–1194. DOI: 10.1149/1.1837571.
  • Zhao, Q.; Zhang, Y.; Meng, Y.; Wang, Y.; Ou, J.; Guo, Y.; Xiao, D. Phytic Acid Derived LiFepo4 Beyond Theoretical Capacity as High-Energy Density Cathode for Lithium Ion Battery. Nano Energy. 2017, 34, 408–420. DOI: 10.1016/j.nanoen.2017.03.006.
  • Ellis, B. L.; Makahnouk, W. R. M.; Makimura, Y.; Toghill, K.; Nazar, L. F. A Multifunctional 3.5 V Iron-Based Phosphate Cathode for Rechargeable Batteries. Nat. Mater. 2007, 6(10), 749–753. DOI: 10.1038/nmat2007.
  • Lung-Hao Hu, B.; Wu, F.-Y.; Lin, C.-T.; Khlobystov, A. N.; Li, L.-J. Graphene-Modified LiFepo4 Cathode for Lithium Ion Battery Beyond Theoretical Capacity. Nat. Commun. 2013, 4(1), 1687. DOI: 10.1038/ncomms2705.
  • Chung, S.-Y.; Bloking, J. T.; Chiang, Y.-M. Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes. Nat. Mater. 2002, 1(2), 123–128. DOI: 10.1038/nmat732.
  • Herle, P. S.; Ellis, B.; Coombs, N.; Nazar, L. F. Nano-Network Electronic Conduction in Iron and Nickel Olivine Phosphates. Nat. Mater. 2004, 3(3), 147–152. DOI: 10.1038/nmat1063.
  • Ahsan, Z.; Ding, B.; Cai, Z.; Wen, C.; Yang, W.; Ma, Y.; Zhang, S.; Song, G.; Javed, M. S. Recent Progress in Capacity Enhancement of LiFepo4 Cathode for Li-Ion Batteries. J. Electrochem. Energy Convers. Storage. 2020, 18(1). DOI: 10.1115/1.4047222.
  • Calderón, C. A.; Thomas, J. E.; Lener, G.; Barraco, D. E.; Visintin, A. Electrochemical Comparison of LiFepo4 Synthesized by a Solid-State Method Using Either Microwave Heating or a Tube Furnace. J. Appl. Electrochem. 2017, 47(10), 1179–1188. DOI: 10.1007/s10800-017-1111-0.
  • Yuan, L.-X.; Wang, Z.-H.; Zhang, W.-X.; Hu, X.-L.; Chen, J.-T.; Huang, Y.-H.; Goodenough, J. B. Development and Challenges of LiFepo4 Cathode Material for Lithium-Ion Batteries. Energy Environ. Sci. 2011, 4(2), 269–284. DOI: 10.1039/C0EE00029A.
  • Omar, H.; Rohani, S. Treatment of Landfill Waste, Leachate and Landfill Gas: A Review. Front. Chem. Sci. Eng. 2015, 9(1), 15–32. DOI: 10.1007/s11705-015-1501-y.
  • Kumar, J.; Neiber, R. R.; Park, J.; Ali Soomro, R.; Greene, G. W.; Ali Mazari, S.; Young Seo, H.; Hong Lee, J.; Shon, M.; Wook Chang, D., et al. Recent Progress in Sustainable Recycling of LiFepo4-Type Lithium-Ion Batteries: Strategies for Highly Selective Lithium Recovery. Chem. Eng. J. 2022, 431, 133993. DOI: 10.1016/j.cej.2021.133993.
  • Baes, K.; Kolk, M.; Carlot, F.; Merhaba, A.; Ito, Y. Future of Batteries; Arthur d Little. https://www.adlittle.com/en/insights/viewpoints/future-batteries
  • Sojka, R.; Pan, Q.; Billmann, L. Comparitive Study of Li-Ion Battery Recycling Processes; 2020.
  • Sen, P. K. T.T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy, and Material Characterization, Edited by Shije Wang, John E. Dutrizac, Michael L. Free, James Y. Hwang, and Daniel Kim. Mater. Manuf. Process. 2015, 30(8), 1051–1052. DOI: 10.1080/10426914.2014.984228.
  • Huang, B.; Pan, Z.; Su, X.; An, L. Recycling of Lithium-Ion Batteries: Recent Advances and Perspectives. J. Power Sources. 2018, 399, 274–286. DOI: 10.1016/j.jpowsour.2018.07.116.
  • Li, L.; Zhang, X.; Li, M.; Chen, R.; Wu, F.; Amine, K.; Lu, J. The Recycling of Spent Lithium-Ion Batteries: A Review of Current Processes and Technologies. Electrochem. Energy Rev. 2018, 1(4), 461–482. DOI: 10.1007/s41918-018-0012-1.
  • Or, T.; Gourley, S. W. D.; Kaliyappan, K.; Yu, A.; Chen, Z. Recycling of Mixed Cathode Lithium-Ion Batteries for Electric Vehicles: Current Status and Future Outlook. Carbon Energy. 2020, 2(1), 6–43. DOI: 10.1002/cey2.29.
  • Lv, W.; Wang, Z.; Cao, H.; Sun, Y.; Zhang, Y.; Sun, Z. A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2018, 6(2), 1504–1521. DOI: 10.1021/acssuschemeng.7b03811.
  • Chen, J.; Li, Q.; Song, J.; Song, D.; Zhang, L.; Shi, X. Environmentally Friendly Recycling and Effective Repairing of Cathode Powders from Spent LiFepo4 Batteries. Green Chem. 2016, 18(8), 2500–2506. DOI: 10.1039/C5GC02650D.
  • Gao, W.; Zhang, X.; Zheng, X.; Lin, X.; Cao, H.; Zhang, Y.; Sun, Z. Lithium Carbonate Recovery from Cathode Scrap of Spent Lithium-Ion Battery: A Closed-Loop Process. Environ. Sci. Technol. 2017, 51(3), 1662–1669. DOI: 10.1021/acs.est.6b03320.
  • Choubey, P. K.; Kim, M.; Srivastava, R. R.; Lee, J.; Lee, J.-Y. Advance Review on the Exploitation of the Prominent Energy-Storage Element: Lithium. Part I: From Mineral and Brine Resources. Miner. Eng. 2016, 89, 119–137. DOI: 10.1016/j.mineng.2016.01.010.
  • Bi, H.; Zhu, H.; Zu, L.; He, S.; Gao, Y.; Gao, S. Pneumatic Separation and Recycling of Anode and Cathode Materials from Spent Lithium Iron Phosphate Batteries. Waste Manag. Res. 2019, 37(4), 374–385. DOI: 10.1177/0734242X18823939.
  • Bi, H.; Zhu, H.; Zu, L.; He, S.; Gao, Y.; Peng, J. Combined Mechanical Process Recycling Technology for Recovering Copper and Aluminium Components of Spent Lithium-Iron Phosphate Batteries. Waste Manag. Res. 2019, 37(8), 767–780. DOI: 10.1177/0734242X19855432.
  • Bi, H.; Zhu, H.; Zu, L.; Gao, Y.; Gao, S.; Bai, Y. Environment-Friendly Technology for Recovering Cathode Materials from Spent Lithium Iron Phosphate Batteries. Waste Manag. Res. 2020, 38(8), 911–920. DOI: 10.1177/0734242X20931933.
  • Xiao, J.; Li, J.; Xu, Z. Challenges to Future Development of Spent Lithium Ion Batteries Recovery from Environmental and Technological Perspectives. Environ. Sci. Technol. 2020, 54(1), 9–25. DOI: 10.1021/acs.est.9b03725.
  • Wang, W.; Wu, Y. An Overview of Recycling and Treatment of Spent LiFepo4 Batteries in China. Resour. Conserv. Recycl. 2017, 127, 233–243. DOI: 10.1016/j.resconrec.2017.08.019.
  • Chen, X.; Ma, H.; Luo, C.; Zhou, T. Recovery of Valuable Metals from Waste Cathode Materials of Spent Lithium-Ion Batteries Using Mild Phosphoric Acid. J. Hazard. Mater. 2017, 326, 77–86. DOI: 10.1016/j.jhazmat.2016.12.021.
  • Bahaloo-Horeh, N.; Mousavi, S. M. Enhanced Recovery of Valuable Metals from Spent Lithium-Ion Batteries Through Optimization of Organic Acids Produced by Aspergillus Niger. Waste Manag. 2017, 60, 666–679. DOI: 10.1016/j.wasman.2016.10.034.
  • Yao, L. P.; Zeng, Q.; Qi, T.; Li, J. An Environmentally Friendly Discharge Technology to Pretreat Spent Lithium-Ion Batteries. J. Clean. Prod. 2020, 245, 118820. DOI: 10.1016/j.jclepro.2019.118820.
  • Kim, S.; Bang, J.; Yoo, J.; Shin, Y.; Bae, J.; Jeong, J.; Kim, K.; Dong, P.; Kwon, K. A Comprehensive Review on the Pretreatment Process in Lithium-Ion Battery Recycling. J. Clean. Prod. 2021, 294, 126329. DOI: 10.1016/j.jclepro.2021.126329.
  • Folster, A.-S.; Kwade, A. Ecological Recycling of Lithium-Ion Batteries from Electric Vehicles with Focus on Mechanical Processes. J. Electrochem. Soc. 2017, 164(1), A6184. DOI: 10.1149/2.0271701jes.
  • Bi, H.; Zhu, H.; Zu, L.; Gao, Y.; Gao, S.; Peng, J.; Li, H. Low-Temperature Thermal Pretreatment Process for Recycling Inner Core of Spent Lithium Iron Phosphate Batteries. Waste Manag. Res. 2020, 39(1), 146–155. DOI: 10.1177/0734242X20957403.
  • Contestabile, M.; Panero, S.; Scrosati, B. A Laboratory-Scale Lithium-Ion Battery Recycling Process. J. Power Sources. 2001, 92(1), 65–69. DOI: 10.1016/S0378-7753(00)00523-1.
  • Ferreira, D. A.; Prados, L. M. Z.; Majuste, D.; Mansur, M. B. Hydrometallurgical Separation of Aluminium, Cobalt, Copper and Lithium from Spent Li-Ion Batteries. J. Power Sources. 2009, 187(1), 238–246. DOI: 10.1016/j.jpowsour.2008.10.077.
  • Bian, D.; Sun, Y.; Li, S.; Tian, Y.; Yang, Z.; Fan, X.; Zhang, W. A Novel Process to Recycle Spent LiFepo4 for Synthesizing LiFepo4/C Hierarchical Microflowers. Electrochim. Acta. 2016, 190, 134–140. DOI: 10.1016/j.electacta.2015.12.114.
  • Yadav, P.; Jie, C. J.; Tan, S.; Srinivasan, M. Recycling of Cathode from Spent Lithium Iron Phosphate Batteries. J. Hazard. Mater. 2020, 399, 123068. DOI: 10.1016/j.jhazmat.2020.123068.
  • Yang, Y.; Huang, G.; Xu, S.; He, Y.; Liu, X. Thermal Treatment Process for the Recovery of Valuable Metals from Spent Lithium-Ion Batteries. Hydrometallurgy. 2016, 165, 390–396. DOI: 10.1016/j.hydromet.2015.09.025.
  • Öhl, J.; Horn, D.; Zimmermann, J.; Stauber, R.; Gutfleisch, O. Efficient Process for Li-Ion Battery Recycling via Electrohydraulic Fragmentation. Mater. Sci. Forum. 2019, 959, 74–78. https://doi.org/10.4028/www.scientific.net/MSF.959.74.
  • Zhang, P.; Yokoyama, T.; Itabashi, O.; Suzuki, T. M.; Inoue, K. Hydrometallurgical Process for Recovery of Metal Values from Spent Lithium-Ion Secondary Batteries. Hydrometallurgy. 1998, 47(2), 259–271. DOI: 10.1016/S0304-386X(97)00050-9.
  • Kim, D.-S.; Sohn, J.-S.; Lee, C.-K.; Lee, J.-H.; Han, K.-S.; Lee, Y.-I. Simultaneous Separation and Renovation of Lithium Cobalt Oxide from the Cathode of Spent Lithium Ion Rechargeable Batteries. J. Power Sources. 2004, 132(1), 145–149. DOI: 10.1016/j.jpowsour.2003.09.046.
  • Shin, S. M.; Kim, N. H.; Sohn, J. S.; Yang, D. H.; Kim, Y. H. Development of a Metal Recovery Process from Li-Ion Battery Wastes. Hydrometallurgy. 2005, 79(3), 172–181. DOI: 10.1016/j.hydromet.2005.06.004.
  • Wang, F.; Sun, R.; Xu, J.; Chen, Z.; Kang, M. Recovery of Cobalt from Spent Lithium Ion Batteries Using Sulphuric Acid Leaching Followed by Solid–Liquid Separation and Solvent Extraction. RSC Adv. 2016, 6(88), 85303–85311. DOI: 10.1039/C6RA16801A.
  • Kang, J.; Senanayake, G.; Sohn, J.; Shin, S. M. Recovery of Cobalt Sulfate from Spent Lithium Ion Batteries by Reductive Leaching and Solvent Extraction with Cyanex 272. Hydrometallurgy. 2010, 100(3), 168–171. DOI: 10.1016/j.hydromet.2009.10.010.
  • Lee, J. Y.; Pranolo, Y.; Zhang, W.; Cheng, C. Y. The Recovery of Zinc and Manganese from Synthetic Spent‐battery Leach Solutions by Solvent Extraction. Solvent. Extr. Ion Exch. 2010, 28(1), 73–84. DOI: 10.1080/07366290903409043.
  • Biswal, B. K.; Jadhav, U. U.; Madhaiyan, M.; Ji, L.; Yang, E.-H.; Cao, B. Biological Leaching and Chemical Precipitation Methods for Recovery of Co and Li from Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2018, 6(9), 12343–12352. DOI: 10.1021/acssuschemeng.8b02810.
  • Li, H.; Xing, S.; Liu, Y.; Li, F.; Guo, H.; Kuang, G. Recovery of Lithium, Iron, and Phosphorus from Spent LiFepo4 Batteries Using Stoichiometric Sulfuric Acid Leaching System. ACS Sustain. Chem. Eng. 2017, 5(9), 8017–8024. DOI: 10.1021/acssuschemeng.7b01594.
  • Tao, S.; Li, J.; Wang, L.; Hu, L.; Zhou, H. A Method for Recovering Li3po4 from Spent Lithium Iron Phosphate Cathode Material Through High-Temperature Activation. Ionics (Kiel). 2019, 25(12), 5643–5653. DOI: 10.1007/s11581-019-03070-w.
  • Li, H.; Ye, H.; Sun, M.; Chen, W. Process for Recycle of Spent Lithium Iron Phosphate Battery via a Selective Leaching-Precipitation Method. J. Cent. South Univ. 2020, 27(11), 3239–3248. DOI: 10.1007/s11771-020-4543-3.
  • Zhang, J.; Hu, J.; Liu, Y.; Jing, Q.; Yang, C.; Chen, Y.; Wang, C. Sustainable and Facile Method for the Selective Recovery of Lithium from Cathode Scrap of Spent LiFepo4 Batteries. ACS Sustain. Chem. Eng. 2019, 7(6), 5626–5631. DOI: 10.1021/acssuschemeng.9b00404.
  • Liu, K.; Yang, S.; Lai, F.; Li, Q.; Wang, H.; Tao, T.; Xiang, D.; Zhang, X. Application of H4P2O7 as Leaching Acid in One-Step Selective Recovery for Metals from Spent LiFepo4 Batteries. Ionics (Kiel). 2021, 27(12), 5127–5135. DOI: 10.1007/s11581-021-04273-w.
  • Fan, M.-C.; Zhao, Y.; Kang, Y.-Q.; Wozny, J.; Liang, Z.; Wang, J.-X.; Zhou, G.-M.; Li, B.-H.; Tavajohi, N.; Kang, F.-Y. Room-Temperature Extraction of Individual Elements from Charged Spent LiFepo4 Batteries. Rare Met. 2022, 41(5), 1595–1604. DOI: 10.1007/s12598-021-01919-6.
  • Rocchetti, L.; Vegliò, F.; Kopacek, B.; Beolchini, F. Environmental Impact Assessment of Hydrometallurgical Processes for Metal Recovery from WEEE Residues Using a Portable Prototype Plant. Environ. Sci. Technol. 2013, 47(3), 1581–1588. DOI: 10.1021/es302192t.
  • Kumari, A.; Jha, M. K.; Lee, J.; Singh, R. P. Clean Process for Recovery of Metals and Recycling of Acid from the Leach Liquor of PCBs. J. Clean. Prod. 2016, 112, 4826–4834. DOI: 10.1016/j.jclepro.2015.08.018.
  • Yang, Y.; Meng, X.; Cao, H.; Lin, X.; Liu, C.; Sun, Y.; Zhang, Y.; Sun, Z. Selective Recovery of Lithium from Spent Lithium Iron Phosphate Batteries: A Sustainable Process. Green Chem. 2018, 20(13), 3121–3133. DOI: 10.1039/C7GC03376A.
  • Song, Y.; Xie, B.; Song, S.; Lei, S.; Sun, W.; Xu, R.; Yang, Y. Regeneration of LiFepo4 from Spent Lithium-Ion Batteries via a Facile Process Featuring Acid Leaching and Hydrothermal Synthesis. Green Chem. 2021, 23(11), 3963–3971. DOI: 10.1039/D1GC00483B.
  • Qiu, X.; Zhang, B.; Xu, Y.; Hu, J.; Deng, W.; Zou, G.; Hou, H.; Yang, Y.; Sun, W.; Hu, Y., et al. Enabling the Sustainable Recycling of LiFepo4 from Spent Lithium-Ion Batteries. Green Chem. 2022, 24(6), 2506–2515. DOI: 10.1039/D1GC04784A.
  • Shentu, H.; Xiang, B.; Cheng, Y.-J.; Dong, T.; Gao, J.; Xia, Y. A Fast and Efficient Method for Selective Extraction of Lithium from Spent Lithium Iron Phosphate Battery. Environ. Technol. Innovations. 2021, 23, 101569. DOI: 10.1016/j.eti.2021.101569.
  • Mahandra, H.; Ghahreman, A. A Sustainable Process for Selective Recovery of Lithium as Lithium Phosphate from Spent LiFepo4 Batteries. Resour. Conserv. Recycl. 2021, 175, 105883. DOI: 10.1016/j.resconrec.2021.105883.
  • Yang, C.; Zhang, J.; Jing, Q.; Liu, Y.; Chen, Y.; Wang, C. Recovery and Regeneration of LiFepo4 from Spent Lithium-Ion Batteries via a Novel Pretreatment Process. Int. J. Miner. Metall. Mater. 2021, 28(9), 1478–1487. DOI: 10.1007/s12613-020-2137-6.
  • Dai, Q.; Kelly, J.; Dunn, J.; Benavides, P. Update of Bill-of-Materials and Cathode Materials Production for Lithium-Ion Batteries in the GREET Model; 2018.
  • Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Li-Ion Battery Materials: Present and Future. Mater. Today 2015, 18 (5), 252–264. https://doi.org/10.1016/j.mattod.2014.10.040.
  • Blomgren, G. E. The Development and Future of Lithium Ion Batteries. J. Electrochem. Soc. 2016, 164 (1), A5019–A5025. https://doi.org/10.1149/2.0251701jes.
  • Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The Lithium-Ion Battery: State of the Art and Future Perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. https://doi.org/10.1016/j.rser.2018.03.002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.