390
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Surface Integrity of additively manufactured Inconel-718 by peening approaches

, &
Pages 1009-1019 | Received 14 Jul 2022, Accepted 31 Oct 2022, Published online: 17 Nov 2022

References

  • Chen, Z.; Han, C.; Gao, M.; Kandukuri, S. Y.; Zhou, K. A Review on Qualification and Certification for Metal Additive Manufacturing. Virtual Phys. Prototyp. 2022, 17(2), 382–405. DOI: 10.1080/17452759.2021.2018938.
  • Peyre, P. Additive Layer Manufacturing Using Metal Deposition. Metals (Basel). 2020, 10(4), 459. DOI: 10.3390/met10040459.
  • Mazumder, S.; Pantawane, M. V.; Dahotre, N. B. Influence of High Heating Rates on Evolution of Oxides on Directed Laser Energy Additively Fabricated IN718. npj Mater. degrad. 2021, 5(1), 1. DOI: 10.1038/s41529-021-00193-2.
  • Chaturvedi, M.; Scutelnicu, E.; Rusu, C. C.; Mistodie, L. R.; Mihailescu, D.; Subbiah, A. V. Wire Arc Additive Manufacturing. Review on Recent Findings and Challenges in Industrial Applications and Materials Characterization. review on Recent Findings and Challenges in Industrial Applications and Materials Characterization. Metals (Basel). 2021, 11(6), 939. DOI: 10.3390/met11060939.
  • Bouabbou, A.; Vaudreuil, S. Understanding Laser-Metal Interaction in Selective Laser Melting Additive Manufacturing Through Numerical Modelling and Simulation: A Review. Virtual Phys. Prototyp. 2022, 17(3), 543–562. DOI: 10.1080/17452759.2022.2052488.
  • Feng, Y.; Hung, T.-P.; Lu, Y.-T.; Lin, Y.-F.; Hsu, F.-C.; Lin, C.-F.; Lu, Y.-C.; Lu, X.; Liang, S. Y. Surface Roughness Modeling in Laser-Assisted End Milling of Inconel 718. Mach. Sci. Technol. 2019, 23(4), 650–668. DOI: 10.1080/10910344.2019.1575407.
  • Casarin, S. J.; De Angelo Sanchez, L. E.; Bianchi, E. C.; Scalon, V. L.; Fragelli, R. L.; De Godoi, E. L.; Cindra Fonseca, M. D. P. Effect of Burnishing on Inconel 718 Workpiece Surface Heated by Infrared Radiation. Mater. Manuf. Process. 2021, 36(16), 1853–1864. DOI: 10.1080/10426914.2021.1926494.
  • Lee, J.-Y.; Nagalingam, A. P.; Yeo, S. H. A Review on the State-Of-The-Art of Surface Finishing Processes and Related ISO/ASTM Standards for Metal Additive Manufactured Components. Virtual Phys. Prototyp. 2021, 16(1), 68–96. DOI: 10.1080/17452759.2020.1830346.
  • Gui, W.; Zhong, C.; Gu, J.; Ding, Y.; Wang, X.; Wu, T.; Liang, Y.; Qin, J.; Qu, Y.; Lin, J. Laser-Clad Inconel 625 Coatings on Q245R Structure Steel: Microstructure, Wear and Corrosion Resistance. npj Mater. degrad. 2022, 6(1), 1–11. DOI: 10.1038/s41529-022-00247-z.
  • Brown, D.; Li, C.; Liu, Z. Y.; Fang, X. Y.; Guo, Y. B. Surface Integrity of Inconel 718 by Hybrid Selective Laser Melting and Milling. Virtual Phys. Prototyp. 2018, 13(1), 26–31. DOI: 10.1080/17452759.2017.1392681.
  • Fayed, E. M.; Saadati, M.; Shahriari, D.; Brailovski, V.; Jahazi, M.; Medraj, M. Effect of Homogenization and Solution Treatments Time on the Elevated-Temperature Mechanical Behavior of Inconel 718 Fabricated by Laser Powder Bed Fusion. Sci. Rep. 2021, 11(1), 2020. DOI: 10.1038/s41598-021-81618-5.
  • Mahalle, G.; Kotkunde, N.; Gupta, A. K.; Singh, S. K. An Improved M–K Model Coupled with Different Ductile Criteria for Fracture Limit Predictions of Inconel 718 Alloy. J. Mater. Res. Technol. 2021, 11, 1162–1174. DOI: 10.1016/j.jmrt.2021.01.092.
  • Mukhtarova, K. S.; Shakhov, R. V.; Smirnov, V. V.; Mukhtarov, S. K. Microstructure and Microhardness Studies of Inconel 718, Manufactured by Selective Laser Melting and Subjected to Severe Plastic Deformation and Annealing. IOP Conf. Ser Mater. Sci. Eng. 2019, 672(1), 012049. DOI: 10.1088/1757-899x/672/1/012049.
  • Lee, H.-T.; Hou, W.-H. Fine Grains Forming Process, Mechanism of Fine Grain Formation and Properties of Superalloy 718. Mater. Trans. 2012, 53(4), 716–723. DOI: 10.2320/matertrans.m2011337.
  • Teixeira, Ó.; Silva, F. J. G.; Atzeni, E. Residual Stresses and Heat Treatments of Inconel 718 Parts Manufactured via Metal Laser Beam Powder Bed Fusion: An Overview. Int. J. Adv. Manuf. Technol. 2021, 113(11–12), 3139–3162. DOI: 10.1007/s00170-021-06835-8.
  • Chen, C.; Yin, J.; Zhu, H.; Zeng, X.; Wang, G.; Ke, L.; Zhu, J.; Chang, S. The Effect of Process Parameters on the Residual Stress of Selective Laser Melted Inconel 718 Thin-Walled Part. Rapid Prototyp. J. 2019, 25(8), 1359–1369. DOI: 10.1108/rpj-09-2018-0249.
  • Navin Kumar, N.; Yadav, A. C.; Raja, K.; Prabhakaran, S.; Naiju, C. D.; Kalainathan, S. Study on Effect of Laser Peening on Inconel 718 Produced by DMLS Technique. In SAE Technical Paper Series; SAE International: 400 Commonwealth Drive, Warrendale, PA, United States, 2019.
  • Luo, K.-Y.; Lu, J.-Z.; Zhang, L.-F.; Zhong, J.-W.; Guan, H.-B.; Qian, X.-M. The Microstructural Mechanism for Mechanical Property of LY2 Aluminum Alloy After Laser Shock Processing. Mater. Eng. 2010, 31(5), 2599–2603. DOI: 10.1016/j.matdes.2009.11.026.
  • Joshi, K. S.; Rajyalakshmi, G.; Ranjith, G.; Kalainathan, S.; Prabhakaran, S. Optimization of Laser Shock Peening for Titanium. Mater. Today. 2018, 5(5), 12174–12186. DOI: 10.1016/j.matpr.2018.02.195.
  • Pegues, J.; Roach, M.; Scott Williamson, R.; Shamsaei, N. Surface Roughness Effects on the Fatigue Strength of Additively Manufactured Ti-6al-4V. Int. J. Fatigue. 2018, 116, 543–552. DOI: 10.1016/j.ijfatigue.2018.07.013.
  • Klotz, T.; Delbergue, D.; Bocher, P.; Lévesque, M.; Brochu, M. Surface Characteristics and Fatigue Behavior of Shot Peened Inconel 718. Int. J. Fatigue. 2018, 110, 10–21. DOI: 10.1016/j.ijfatigue.2018.01.005.
  • Kumar, V. P.; Jebaraj, A. V. Influence of Double Aging Heat Treatment on Phase Transformation and Dimensional Accuracy of Inconel 718 Alloy Made Through Laser-Based Additive Manufacturing. Trans. Indian Inst. Met. 2021, 74(12), 3103–3117. DOI: 10.1007/s12666-021-02374-8.
  • Munther, M.; Martin, T.; Tajyar, A.; Hackel, L.; Beheshti, A.; Davami, K. Laser Shock Peening and Its Effects on Microstructure and Properties of Additively Manufactured Metal Alloys: A Review. Eng. Res. Express. 2020, 2(2), 022001. DOI: 10.1088/2631-8695/ab9b16.
  • Shrestha, D.; Azarmi, F.; Tangpong, X. W. Effect of Heat Treatment on Residual Stress of Cold Sprayed Nickel-Based Superalloys. J. Therm. Spray. Technol. 2022, 31(1–2), 197–205. DOI: 10.1007/s11666-021-01284-x.
  • Barros, R.; Silva, F. J. G.; Gouveia, R. M.; Saboori, A.; Marchese, G.; Biamino, S.; Salmi, A.; Atzeni, E. Laser Powder Bed Fusion of Inconel 718: Residual Stress Analysis Before and After Heat Treatment. Metals (Basel). 2019, 9(12), 1290. DOI: 10.3390/met9121290.
  • Kumar, V. P.; Jebaraj, A. V. Attainment of Favorable Microstructure for Residual Stress Reduction Through High-Temperature Heat Treatment on Additive Manufactured Inconel 718 Alloy. Int. J. Adv. Manuf. Technol. 2022, 121(7–8), 4455–4472. DOI: 10.1007/s00170-022-09640-z.
  • Goulmy, J.-P.; Boyer, V.; Toualbi, L.; Kanoute, P.; Kruch, S.; Retraint, D.; Rouhaud, E.; Seror, A.; Puydt, Q. Assessment of Shot-Peening on Fatigue Life of Inconel 718 turbine disk https://www.shotpeener.com/library/pdf/2017046.pdf (accessed Jul 8, 2022).
  • Telang, A.; Gill, A. S.; Mannava, S. R.; Qian, D.; Vasudevan, V. K. Effect of Temperature on Microstructure and Residual Stresses Induced by Surface Treatments in Inconel 718 SPF. Surf. Coat. Technol. 2018, 344, 93–101. DOI: 10.1016/j.surfcoat.2018.02.094.
  • Prevey, P. S.; Hornbach, D. J.; Mason, P. W.; Milam, D.; Poteet, D. A.; Pfaffman, G. D.; Rudnev, V.; Muehlbauer, A.; Albert, W. B. Thermal Residual Stress Relaxation and Distortion in Surface Enhanced GasTurbine Engine Components. DOI:10.1361/cp1997ht003.
  • Mythreyi, O. V.; Raja, A.; Nagesha, B. K.; Jayaganthan, R. Corrosion Study of Selective Laser Melted IN718 Alloy Upon Post Heat Treatment and Shot Peening. Metals (Basel). 2020, 10(12), 1562. DOI: 10.3390/met10121562.
  • Gill, A. S.; Telang, A.; Vasudevan, V. K. Characteristics of Surface Layers Formed on Inconel 718 by Laser Shock Peening with and Without a Protective Coating. J. Mater. Process. Technol. 2015, 225, 463–472. DOI: 10.1016/j.jmatprotec.2015.06.026.
  • Rozmus-Górnikowska, M.; Kusiński, J.; Cieniek, Ł. Effect of Laser Shock Peening on the Microstructure and Properties of the Inconel 625 Surface Layer. J. Mater. Eng. Perform. 2020, 29(3), 1544–1549. DOI: 10.1007/s11665-020-04667-3.
  • Peng, X.; Kong, L.; Fuh, J. Y. H.; Wang, H. A Review of Post-Processing Technologies in Additive Manufacturing. J. Manuf. Mater. Process. 2021, 5(2), 38. DOI: 10.3390/jmmp5020038.
  • Lesyk, D. A.; Dzhemelinskyi, V. V.; Martinez, S.; Mordyuk, B. N.; Lamikiz, A. Surface Shot Peening Post-Processing of Inconel 718 Alloy Parts Printed by Laser Powder Bed Fusion Additive Manufacturing. J. Mater. Eng. Perform. 2021, 30(9), 6982–6995. DOI: 10.1007/s11665-021-06103-6.
  • Hackel, L.; Fuhr, J.; Sharma, M.; Rankin, J.; Sherman, V.; Davami, K. Test Results for Wrought and AM In718 Treated by Shot Peening and Laser Peening Plus Thermal Microstructure Engineering. Procedia Struct. Integr. 2019, 19, 452–462. DOI: 10.1016/j.prostr.2019.12.049.
  • Gill, A. S.; Zhou, Z.; Lienert, U.; Almer, J.; Lahrman, D. F.; Mannava, S. R.; Qian, D.; Vasudevan, V. K. P. N. High Spatial Resolution, High Energy Synchrotron X-Ray Diffraction Characterization of Residual Strains and Stresses in Laser Shock Peened Inconel 718SPF Alloy. J. Appl. Phys. 2012, 111(10), 109902. [J. Appl. Phys. 111, 084904 (2012)]. DOI:10.1063/1.4718917.
  • Maleki, E.; Unal, O.; Guagliano, M.; Bagherifard, S. The Effects of Shot Peening, Laser Shock Peening and Ultrasonic Nanocrystal Surface Modification on the Fatigue Strength of Inconel 718. Mater. Sci. Eng. A Struct. Mater. 2021, 810(141029), 141029. DOI: 10.1016/j.msea.2021.141029.
  • Mostafaei, A.; Toman, J.; Stevens, E. L.; Hughes, E. T.; Krimer, Y. L.; Chmielus, M. Microstructural Evolution and Mechanical Properties of Differently Heat-Treated Binder Jet Printed Samples from Gas- and Water-Atomized Alloy 625 Powders. Acta Mater. 2017, 124, 280–289. DOI: 10.1016/j.actamat.2016.11.021.
  • Zhang, F.; Levine, L. E.; Allen, A. J.; Stoudt, M. R.; Lindwall, G.; Lass, E. A.; Williams, M. E.; Idell, Y.; Campbell, C. E. Effect of Heat Treatment on the Microstructural Evolution of a Nickel-Based Superalloy Additive-Manufactured by Laser Powder Bed Fusion. Acta Mater. 2018, 152, 200–214. DOI: 10.1016/j.actamat.2018.03.017.
  • Levine, L. E.; Larson, B. C.; Yang, W.; Kassner, M. E.; Tischler, J. Z.; Delos-Reyes, M. A.; Fields, R. J.; Liu, W. X-Ray Microbeam Measurements of Individual Dislocation Cell Elastic Strains in Deformed Single-Crystal Copper. Nat. Mater. 2006, 5(8), 619–622. DOI: 10.1038/nmat1698.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.