293
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Surface smoothening and strengthening combined effect of mechanical hammer peening on inconel 718 superalloy

, , &
Pages 1331-1337 | Received 25 Aug 2022, Accepted 03 Oct 2022, Published online: 13 Nov 2022

References

  • Reed, R.C. The Superalloys: Fundamentals and Applications; UK: Cambridge university press, 2008.
  • Karthick, M.; Anand, P.; Siva Kumar, M.; Meikandan, M. Exploration of MFOA in PAC Parameters on Machining Inconel 718. Mater. Manuf. Process. 2022, 37(12), 1433–1445. DOI: https://doi.org/10.1080/10426914.2021.2001507.
  • Yong, C.K.; Gibbons, G.J.; Wong, C.C.; West, G. A Critical Review of the Material Characteristics of Additive Manufactured In718 for High-Temperature Application. Metals (Basel). 2020, 10(12), 1–22. DOI: https://doi.org/10.3390/met10121576.
  • Kumar, D.; Idapalapati, S.; Wang, W.; Child, D.J.; Haubold, T.; Wong, C.C. Microstructure-Mechanical Property Correlation in Shot Peened and Vibro-Peened Ni-Based Superalloy. J. Mater. Process. Technol. 2019, 267, 215–229. DOI: 10.1016/j.jmatprotec.2018.12.007.
  • Zhang, X.; Huang, J.; Niu, Z.; Zhong, Y.; Zhou, W.; Chen, G.; Fu X. Analysis of Shot Peening Residual Stress Distribution Based on Dislocation Configuration. Mater. Sci. Technol. 2022, 1–9. DOI:10.1080/02670836.2022.2076459.
  • Qiang, B.; Li, Y.; Yao, C.; Wang, X. Effect of Shot Peening Coverage on Residual Stress Field and Surface Roughness. Surf. Eng. 2018, 34(12), 938–945. DOI: https://doi.org/10.1080/02670844.2017.1391939.
  • Zhang, Q.; Xu, S.; Zhang, Z.; Zhang, X.; Wang, J.; Si, C. Residual Stress and Microhardness Evolution Induced by Conventional and Ultrasonic Shot Peening. Mater. Sci. Technol. 2022, 38(7), 436–443. DOI: https://doi.org/10.1080/02670836.2022.2045551.
  • Zhu, S.; Hu, Y.; Zhang, X.; Zou, Y.; Ahmad, T.; Zhang, W.; Tang, F.; Liang, T. Experimental Investigation on Ultrasonic Shot Peening of WC-Co Alloy. Mater. Manuf. Process. 2020, 35(14), 1576–1583. DOI: https://doi.org/10.1080/10426914.2020.1779943.
  • Kattoura, M.; Telang, A.; Mannava, S.R.; Qian, D.; Vasudevan, V.K. Effect of Ultrasonic Nanocrystal Surface Modification on Residual Stress, Microstructure and Fatigue Behavior of ATI 718plus Alloy. Mater. Sci. Eng. A. 2018, 711, 364–377. DOI: 10.1016/j.msea.2017.11.043.
  • Klotz, T.; Delbergue, D.; Bocher, P.; Lévesque, M.; Brochu, M. Surface Characteristics and Fatigue Behavior of Shot Peened Inconel 718. Int. J. Fatigue. 2018, 110, 10–21. DOI: 10.1016/j.ijfatigue.2018.01.005.
  • Shen, X.; Gong, X.; Wang, B.; He, J.; Xu, C.; Su, G. Surface Properties Enhancement of Inconel 718 Alloy by Ultrasonic Roller Burnishing Coupled with Heat Treatment. Arch. Civ. Mech. Eng. 2021, 21(3), 1–17. DOI: https://doi.org/10.1007/s43452-021-00277-5.
  • Maleki, E.; Unal, O.; Guagliano, M.; Bagherifard, S. The Effects of Shot Peening, Laser Shock Peening and Ultrasonic Nanocrystal Surface Modification on the Fatigue Strength of Inconel 718. Mater. Sci. Eng. A. 2021, 810, 141029. DOI: 10.1016/j.msea.2021.141029.
  • Huang, B.; Wang, L.; Liu, X.; Hui, L.; Cong, J.; Zhou, S. Effect of Ultrasonic Impact Treatment on Corrosion Fatigue Performance of Friction Stir Welded 2024-T4 Aluminum Alloy. Corros. Eng. Sci. Technol. 2022, 57(3), 243–253. DOI: https://doi.org/10.1080/1478422X.2022.2028345.
  • Liu, J.; Zhang, X.; Cui, Z.; Yu, J.; Liu, J.; Zou, Y.; Liang, T. Experimental Investigation on Ultrasonic Surface Rolling of Inconel 690TT. Mater. Manuf. Process. 2021, 36(10), 1208–1217. DOI: https://doi.org/10.1080/10426914.2021.1905831.
  • Bleicher, F.; Lechner, C.; Habersohn, C.; Kozeschnik, E.; Adjassoho, B.; Kaminski, H. Mechanism of Surface Modification Using Machine Hammer Peening Technology. CIRP Ann. - Manuf. Technol. 2012, 61(1), 375–378. DOI: https://doi.org/10.1016/j.cirp.2012.03.139.
  • Jagadeesh, G. V.; Gangi Setti, S. A Review on Latest Trends in Ball and Roller Burnishing Processes for Enhancing Surface Finish. Adv. Mater. Process. Technol. 2022, 00, 1–25. DOI: 10.1080/2374068X.2022.2077534.
  • Schulze, V.; Bleicher, F.; Groche, P.; Guo, Y.B.; Pyun, Y.S. Surface Modification by Machine Hammer Peening and Burnishing. CIRP Ann. - Manuf. Technol. 2016, 65(2), 809–832. DOI: https://doi.org/10.1016/j.cirp.2016.05.005.
  • Bleicher, F.; Lechner, C.; Habersohn, C.; Obermair, M.; Heindl, F.; Rodriguez Ripoll, M. Improving the Tribological Characteristics of Tool and Mould Surfaces by Machine Hammer Peening. CIRP Ann. - Manuf. Technol. 2013, 62(1), 239–242. DOI: https://doi.org/10.1016/j.cirp.2013.03.043.
  • Mannens, R.; Trauth, D.; Mattfeld, P.; Klocke, F. Influence of Impact Force, Impact Angle, and Stroke Length in Machine Hammer Peening on the Surface Integrity of the Stainless Steel X3crnimo13-4. Procedia CIRP. 2018, 71, 166–171. DOI: 10.1016/j.procir.2018.05.091.
  • Schubnell, J.; Eichheimer, C.; Ernould, C.; Maciolek, A.; Rebelo-Kornmeier, J.; Farajian, M. The Influence of Coverage for High Frequency Mechanical Impact Treatment of Different Steel Grades. J. Mater. Process. Technol. 2020, 277, 116437. DOI: 10.1016/j.jmatprotec.2019.116437.
  • Liu, H.; Tan, C.K.I.; Dong, X.; Meng, T.L.; Cao, J.; Wei, Y. Laser-Cladding and Robotic Hammer Peening of Stainless Steel 431 on Low Alloy Steel 4140 for Surface Enhancement and Corrosion Protections. J. Adhes. Sci. Technol. 2021, 36(21), 1–15. DOI: https://doi.org/10.1080/01694243.2021.2011657.
  • Morikage, Y.; Nakanishi, K.; Igi, S.; Nakano, T.; Tomo, H. Improvement Mechanism of Fatigue Strength of Weld Joints by Hammer Peening on Base Metal. Weld. Int. 2017, 31(7), 531–537. DOI: https://doi.org/10.1080/09507116.2016.1223219.
  • Lin, X.H.; Huang, H.B.; Zhou, C.S.; Liu, J.C.; Saleh, M.; Wang, Z.Z. Research on Surface Modification of Anodized Aluminum Alloy Using Piezoelectric Machine Hammer Peening. Int. J. Adv. Manuf. Technol. 2019, 104(1–4), 1211–1219. DOI: https://doi.org/10.1007/s00170-019-04016-2.
  • Gui, Y.; Enhancement on the Surface Integrity of TC4 Titanium Alloy by Micro-Forging 2020.[桂宇飞. 微锻工艺增强TC4钛合金表面完整性研究[D].上海交通大学,2020]. DOI:10.27307/d.cnki.gsjtu.2020.001634.
  • Neto, L.; Williams, S.; Ding, J.; Hönnige, J.; Martina, F. Mechanical Properties Enhancement of Additive Manufactured Ti-6al-4V by Machine Hammer Peening. Lect. Notes Mech. Eng. 2020, 121–132. DOI: 10.1007/978-981-15-0054-1_13.
  • Hönnige, J.R.; Davis, A.E.; Ho, A.; Kennedy, J.R.; Neto, L.; Prangnell, P.; Williams, S. The Effectiveness of Grain Refinement by Machine Hammer Peening in High Deposition Rate Wire-Arc AM Ti-6al-4V. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2020, 51(7), 3692–3703. DOI: https://doi.org/10.1007/s11661-020-05781-6.
  • Liu, H.; Tan, C.K.I.; Cheng, W.S.; Lim, G.W.; Tan, D.C.; Lee, C.J., Cheng, JJ; Cheng, HK; Lee, LC. Effects of Robotic Hammer Peening on Structural Properties of Ni-Based Single-Crystal Superalloy: Dislocation Slip Traces and Crystallographic Reorientations. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2020, 51(6), 3180–3193.
  • Chen, T.; John, H.; Xu, J.; Lu, Q.; Hawk, J.; Liu, X. Influence of Surface Modifications on Pitting Corrosion Behavior of Nickel-Base Alloy 718. Part 1: Effect of Machine Hammer Peening. Corros. Sci. 2013, 77, 230–245. DOI: 10.1016/j.corsci.2013.08.007.
  • Chen, T.; John, H.; Xu, J.; Lu, Q.; Hawk, J.; Liu, X. Influence of Surface Modifications on Pitting Corrosion Behavior of Nickel-Base Alloy 718. Part 2: Effect of Aging Treatment. Corros. Sci. 2014, 78, 151–161. DOI: 10.1016/j.corsci.2013.09.010.
  • Chen, T.; John, H.; Xu, J.; Hawk, J.; Liu, X. Effects of Hammer Peening and Aging Treatment on Microstructure, Mechanical Properties and Corrosion Resistance of Oil-Grade Alloy 718. Superalloys 2012. 2012, 609–614. DOI: 10.1002/9781118516430.ch68.
  • Li, J.K.; Mei, Y.; Duo, W.; Renzhi, W. Mechanical Approach to the Residual Stress Field Induced by Shot Peening. Mater. Sci. Eng. A. 1991, 147(2), 167–173. DOI: https://doi.org/10.1016/0921-5093(91)90843-C.
  • Karimbaev, R.M.; Pyun, Y.S.; Amanov, A. Fatigue Life Extension of Additively Manufactured Nickel-Base 718 Alloy by Nanostructured Surface. Mater. Sci. Eng. A. 2022, 831, 142041. DOI: 10.1016/j.msea.2021.142041.
  • Maleki, E.; Bagherifard, S.; Unal, O.; Bandini, M.; Farrahi, G.H.; Guagliano, M. Introducing Gradient Severe Shot Peening as a Novel Mechanical Surface Treatment. Sci. Rep. 2021, 11(1), 1–13. DOI: https://doi.org/10.1038/s41598-021-01152-2.
  • Amanov, A.; Umarov, R. The Effects of Ultrasonic Nanocrystal Surface Modification Temperature on the Mechanical Properties and Fretting Wear Resistance of Inconel 690 Alloy. Appl. Surf. Sci. 2018, 441, 515–529. DOI: 10.1016/j.apsusc.2018.01.293.
  • Ji, R.; Yang, Z.; Jin, H.; Liu, Y.; Wang, H.; Zheng, Q.; Cheng, W.; Cai, B.; Li, X. Surface Nanocrystallization and Enhanced Surface Mechanical Properties of Nickel-Based Superalloy by Coupled Electric Pulse and Ultrasonic Treatment. Surf. Coatings Technol. 2019, 375, 292–302. DOI: 10.1016/j.surfcoat.2019.07.037.
  • Hall, E.O. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc. Phys. Soc. Sect B. 1951, 64(9), 747–753. DOI: https://doi.org/10.1088/0370-1301/64/9/303.
  • Petch, N.J. The Cleavage Strength of Polycrystals. J. Iron Steel InstInst. 1953, 174, 25–28.
  • Davis, J. Analytical Modeling and Applications of Residual Stresses Induced by Shot Peening. Thesis. 2012.
  • Zhang, Q.; Hu, Z.; Su, W.; Zhou, H.; Liu, C.; Yang, Y.; Qi, X. Microstructure and Surface Properties of 17-4PH Stainless Steel by Ultrasonic Surface Rolling Technology. Surf. Coat. Technol. 2017, 321, 64–73. DOI: 10.1016/j.surfcoat.2017.04.052.
  • Nguyen, T.T.; Nguyen, T.A.; Trinh, Q.H.; Le, X.B. Multi-Performance Optimization of Multi-Roller Burnishing Process in Sustainable Lubrication Condition. Mater. Manuf. Process. 2022, 37(4), 407–427. DOI: 10.1080/10426914.2021.1962533.
  • Dreyer, J.K.; Desai, D.A.; Kok, S. Investigation of an Alternate Computationally Efficient Technique to Model Laser Shock Peening by Modification of the Pressure Load. Int. J. Adv. Manuf. Technol. 2022, 122(7–8), 3115–3127. DOI: https://doi.org/10.1007/s00170-022-10064-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.