309
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Interference screws 3D printed with polymer-based biocomposites (HA/PLA/PCL)

, , , , &
Pages 1093-1103 | Received 15 Jul 2022, Accepted 14 Nov 2022, Published online: 13 Dec 2022

References

  • Central Bureau of Statistics. Bone screw import data 2017-2020. Central Bureau of Statistics. (In indonesian); 2021. https://www.bps.go.id (accessed Jul 23, 2021).
  • Melyana, B.; Purnawati, S.; Lesmana, S. I.; Mahadewa, T. G. B.; Muliarta, I. M.; Griadhi, I. P. A. Functional exercise therapy in water increases isometric contraction strength of thigh muscles in post reconstruction of anterior cruciatum ligament injury phase 2 at gatot soebroto hospital Jakarta, (In Indonesian). Sport Fit. J. 2021, 9(1), 55.
  • Gao, X.; Fraulob, M.; Haïat, G. Biomechanical behaviours cf the bone-implant interface: A review. J. R. Soc. Interface. 2019, 16(156), 20190259. DOI: 10.1098/rsif.2019.0259.
  • Smith, P. A.; Stannard, J. P.; Pfeiffer, F. M.; Kuroki, K.; Bozynski, C. C.; Cook, J. L. Suspensory versus interference screw fixation for arthroscopic anterior cruciate ligament reconstruction in a translational large-animal model. Arthrosc. - J. Arthrosc. Relat. Surg. 2016, 32(6), 1086–1097. DOI: 10.1016/j.arthro.2015.11.026.
  • Yadav, S.; Gangwa, S. An overview on recent progresses and future perspective of biomaterials. IOP Conf. Ser Mater. Sci. Eng. 2018, 404, 012013. DOI: 10.1088/1757-899X/404/1/012013.
  • Aitasalo, K. M.; Piitulainen, J. M.; Rekola, J.; Vallittu, P. K. Craniofacial bone reconstruction with bioactive fiber-reinforced composite implant. Head Neck. 2014, 36(5), 722–728. DOI: 10.1002/hed.23370.
  • Chu, K.; Oshida, Y.; Hancock, E.; Kowolik, M.; Barco, T.; Zunt, S. Hydroxyapatite/PMMA composites as bone cements. Biomed. Mater. Eng. 2004, 14(1), 87–105.
  • Kuroda, K.; Okido, M. Hydroxyapatite coating of titanium implants using hydroprocessing and evaluation of their Osteoconductivity. Bioinorg. Chem. Appl. 2012, 2012, 730693. DOI: 10.1155/2012/730693.
  • Peltola, M. J.; Vallittu, P. K.; Vuorinen, V.; Aho, A. A. J.; Puntala, A.; Aitasalo, K. M. J. Novel composite implant in craniofacial bone reconstruction. Eur. Arch. Otorhinolaryngol. 2012, 269(2), 623–628. DOI: 10.1007/s00405-011-1607-x.
  • Bouhfid, N.; Raji, M.; Boujmal, R.; Essabir, H.; Bensalah, M. O.; Bouhfid, R.; Qaiss, A. E. K. 5-numerical modeling of hybrid composite materials. In Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Woodhead Publishing Series in Composites Science and Engineering; Jawaid, M., Thariq, M. Saba, N., Eds.; 2019; pp. 57–101. DOI: 10.1016/B978-0-08-102289-4.00005-9.
  • İ̇şmal, Ö. E.; Paul, R. 17-Composite textiles in high performance apparel materials, development, and applications, woodhead publishing series in textiles. 2018, 377–420. DOI:10.1016/B978-0-08-100904-8.00019-5.
  • Zhang, B.; Wang, L.; Song, P.; Pei, X.; Sun, H.; Wu, L.; Zhou, C.; Wang, K.; Fan, Y.; Zhang, X. 3D printed bone tissue regenerative PLA/HA scaffolds with comprehensive performance optimizations. Mater. Des. 2021, 201, 109490. DOI: 10.1016/j.matdes.2021.109490.
  • Fang, R.; Zhang, E.; Xu, L.; Wei, S. Electrospun PCL/PLA/HA based nanofibers as scaffold for osteoblast-like cells. J. Nanosci. Nanotechnol. 2010, 10(11), 7747–7751. DOI: 10.1166/jnn.2010.2831.
  • Bernhardt, A.; Lode, A.; Mietrach, C.; Hempel, U.; Hanke, T.; Gelinsky, M. In vitro osteogenic potential of human bone marrow stromal cells cultivated in porous scaffolds from mineralized collagen. J. Biomed. Mater. Res. 2009, 90(3), 852–862. DOI: 10.1002/jbm.a.32144.
  • Liu, G.; Zhao, L.; Cui, L.; Liu, W.; Cao, Y. Tissue-engineered bone formation using human bone marrow stromal cells and novel β-tricalcium phosphate. Biomed. Mater. 2007, 2(2), 78–86. DOI: 10.1088/1748-6041/2/2/004.
  • Piekarski, K. Analysis of bone as a composite material. Int. J. Eng. Sci. 1973, 11(6), 557–565. DOI: 10.1016/0020-7225(73)90018-9.
  • Park, S. A.; Lee, S. H.; Kim, W. D. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Bioproc. Biosyst. Eng. 2011, 34(4), 505–513. DOI: 10.1007/s00449-010-0499-2.
  • Yeo, M. G.; Kim, G. H. Preparation and characterization of 3D composite scaffolds based on rapid-prototyped PCL/β-TCP struts and electrospun PCL coated with collagen and HA for bone regeneration. Chem. Mater. 2012, 24(5), 903–913. DOI: 10.1021/cm201119q.
  • Ismail, R.; Laroybafih, M. B.; Fitriyana, D. F.; Nugroho, S.; Santoso, Y. I.; Hakim, A. J.; Al Mulqi, M. S.; Bayuseno, A. P. The effect of hydrothermal holding time on the characterization of hydroxyapatite synthesized from green mussel shells. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 80(1), 84–93. DOI: 10.37934/arfmts.80.1.8493.
  • Hassanajili, S.; Ali Karami-Poura, A.; Oryan, A.; Talaei-Khozanic, T. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Mater. Sci. Eng. C. 2019, 104, 109960. DOI: 10.1016/j.msec.2019.109960.
  • Cho, Y. S.; Sunkyung Choi, S.; Se-Hwan Lee, S. H.; Kee, K.; Kimb, K. K.; Young-Sam Cho, Y. -S. Assessments of polycaprolactone/hydroxyapatite composite scaffold with enhanced biomimetic mineralization by exposure to hydroxyapatite via a 3D-printing system and alkaline erosion. Eur. Polym. J. 2019, 113, 340–348. DOI: 10.1016/j.eurpolymj.2019.02.006.
  • Bayuseno, A. P.; Prasetya, A. I.; Ismail, R.; Setiyana, B.; Jamari, J. Reuse of waste crab shells for synthesis of calcium carbonate as a candidate biomaterial. Rasayan J. Chem. 2022, 15(1), 523–528. DOI: 10.31788/RJC.2022.1516640.
  • Chen, G.; Chen, N.; Wang, Q. Fabrication and properties of poly(vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for Bone tissue engineering. Compos. Sci. Technol. 2019, 172, 17–28. DOI: 10.1016/j.compscitech.2019.01.004.
  • Huang, Y. F.; Xu, J. Z.; Zhou, D.; Xu, L.; Zhao, B.; Li, Z. M. Simultaneous reinforcement and toughening of polymer/hydroxyapatite composites by constructing bone-like structure. Compos. Sci. Technol. 2017, 151, 234–242. DOI: 10.1016/j.compscitech.2017.08.026.
  • Liu, T.; Huang, K.; Li, L.; Gu, Z.; Liu, X.; Peng, X.; Kuang, T. High performance highdensity polyethylene/hydroxyapatite nanocomposites for load-bearing bone substitute: Fabrication, in vitro and in vivo biocompatibility evaluation. Compos. Sci. Technol. 2019, 175, 100–110. DOI: 10.1016/j.compscitech.2019.03.012.
  • Kim, S. B.; Kim, Y. J.; Yoon, T. L.; Park, S. A.; Cho, I. H.; Kim, E. J.; Kim, I. A.; Shin, J. W. The characteristics of a hydroxyapatite–chitosan–PMMA bone cement. Biomater. 2004, 25(26), 5715–5723. DOI: 10.1016/j.biomaterials.2004.01.022.
  • Kim, M. H.; Yun, C.; Chalisserry, E. P.; Lee, Y. W.; Kang, H. W.; Park, S. H.; Jung, W. K.; Oh, J.; Nam, S. Y. Quantitative analysis of the role of nanohydroxyapatite (nHA) on 3D-printed PCL/nHA composite scaffolds. Mater. Lett. 2018, 220, 112–115. DOI: 10.1016/j.matlet.2018.03.025.
  • Moldovan, F.; Bataga, T. Torque control during bone insertion of cortical screws. Procedia. Manuf. 2020, 46, 484–490. DOI: 10.1016/j.promfg.2020.03.070.
  • Azevedo, M. C.; Reis, R. L.; Claase, M. B.; Grijpma, D. W.; Feijen, J. Development and properties of polycaprolactone/hydroxyapatite composite biomaterials. J. Mater. Sci. Mater. Med. 2003, 14(2), 103–107. DOI: 10.1023/A:1022051326282.
  • Azevedo, M. C.; Reis, R. L.; Claase, M. B.; Grijpma, D. W.; Feijen, J. Present, and future in bone regeneration. Bone Tissue Regen. Insights. 2016, 9. DOI: 10.4137/BTRI.S36138.
  • Akhoundi, B.; Nabipour, M.; Hajami, F.; Shakoori, D. An experimental study of nozzle temperature and heat treatment (annealing) effects on mechanical properties of high-temperature polylactic acid in fused deposition modeling. Polym. Eng. Sci. 2020, 60(5), 979–987. DOI: 10.1002/pen.25353.
  • Belarbi, Y. E.; Guessasma, S.; Belhabib, S.; Benmahiddine, F.; El, A.; Hamami, A. Effect of printing parameters on mechanical behaviour of PLA-flax printed structures by fused deposition modelling. Mater. (Basel). 2021, 14, 1–17. DOI: 10.3390/ma14195883.
  • Nitz, A. J. Soft Tissue Injury and Repair in Orthopaedic Physical Theraphy Secrets, 3 ed.; Elsevier Inc, 2017.
  • Moura, C. S.; Ferreira, F. C.; Bártolo, P. J. Comparison of three-dimensional extruded poly (Ε-caprolactone) and polylactic acid scaffolds with pore size variation,”. Procedia. CIRP. 2016, 49, 209–212. DOI: 10.1016/j.procir.2015.11.018.
  • Dhandapani, R.; Krishnan, P. D.; Zennifer, A.; Kannan, V.; Manigandan, A.; Arul, M. R.; Jaiswal, D.; Subramanian, A.; Kumbar, S. G.; Sethuram, S. Additive manufacturing of biodegradable porous orthopaedic screw. Bioact. Mater. 2020, 5(3), 458–467. DOI: 10.1016/j.bioactmat.2020.03.009.
  • Al Jabbari, Y. S.; Fournelle, R.; Ziebert, G.; Toth, J.; Iacopino, A. M. Mechanical behavior and failure analysis of prosthetic retaining screws After long-term use in vivo. J. Prosthodont. 2008, 17(3), 168–180. DOI: 10.1111/j.1532-849X.2007.00265.x.
  • Bhaduri, A. Torsion — pure shear. Chem. Mater. Sci. 2018, 197–225. DOI: 10.1007/978-981-10-7209-3.
  • Abeykoon, C.; Sri-Amphorn, P.; Dan Fernando, A. Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. Int. J. Lightweight Mater. Manuf. 2020, 3(3), 284–297. DOI: 10.1016/j.ijlmm.2020.03.003.
  • Orozco-Díaz, C. A.; Moorehead, R.; Reilly, G. C.; Gilchrist, F.; Chery Miller, C. Characterization of a composite polylactic acid-hydroxyapatite 3D-printing filament for bone-regeneration. Biomed. Phys. Eng. Express. 2020, 6(2), 025007. DOI: 10.1088/2057-1976/ab73f8.
  • Liu, A.; Xue, G. H.; Sun, M.; Shao, H. -F.; Chi-Yuan Ma, C. Y.; Gao, Q.; Gou, Z. R.; Yan, S. G.; Liu, Y. M.; He, Y. 3D printing surgical implants at the clinic: A experimental study on anterior cruciate ligament reconstruction. Sci. Rep. 2016, 6(1), 1–13. DOI: 10.1038/srep21704.
  • Chatzistergos, P. E.; Magnissalis, E. A.; Kourkoulis, S. K. A parametric study of cylindrical pedicle screw design implications on the pullout performance using an experimentally validated finite-element model. Med. Eng. Phys. 2010, 32(2), 145–154. DOI: 10.1016/j.medengphy.2009.11.003.
  • Chizari, M.; Snow, M.; Wang, B. Post-operative analysis of ACL tibial fixation. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17(7), 730–736. DOI: 10.1007/s00167-008-0685-9.
  • Chang, J. Z. C.; Chen, Y. J.; Tung, Y. Y.; Chiang, Y. Y.; Lai, E. H. H.; Chen, W. P.; Lin, C. P. Effects of thread depth, taper shape, and taper length on the mechanical properties of mini-implants. Am. J. Orthod. Dentofacial. Orthop. 2012, 141(3), 279–288. DOI: 10.1016/j.ajodo.2011.09.008.
  • Alsoufi, M. S.; Alhazmi, M. W.; Suker, D. K.; Alghamdi, T. A.; Sabbagh, R. A.; Felemban, M. A.; Bazuhair, F. K. Experimental characterization of the influence of nozzle temperature in FDM 3D printed pure PLA and advanced PLA. Am. J. Mech. Eng. 2019, 7(2), 45–60. DOI: 10.12691/ajme-7-2-1.
  • Malikmammadov, E.; Tugba Endogan Tanir, T. E.; Kiziltay, A.; Vasif Hasirci, V.; Hasirci, N. PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 2018, 29(7–9), 863–893. DOI: 10.1080/09205063.2017.1394711.
  • Rajkumar, A. R.; Shanmugam, K. Additive manufacturing-enabled shape transformations via FFF 4D printing. J. Mater. Res. 2018, 33(24), 4362–4376. DOI: 10.1557/jmr.2018.397.
  • Kim, B. -S.; Sun-Sik Yang, S. -S.; Park, H.; Lee, S. -H.; Young-Sam Cho, Y. -S.; Lee, J. Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by ε-polycarbonate coating. J. Biomater. Sci. Polym. Ed. 2017, 28(13), 1256–1270. DOI: 10.1080/09205063.2017.1312059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.