185
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Double-layer electrowetting-aided spinning for fabrication of metal-core piezoelectric-piezoresistive composite fiber

, &
Pages 1159-1169 | Received 28 Nov 2022, Accepted 27 Dec 2022, Published online: 09 Jan 2023

References

  • Mokhtari, F.; Cheng, Z.; Raad, R.; Xi, J.; Foroughi, J. Piezofibers to Smart Textiles: A Review on Recent Advances and Future Outlook for Wearable Technology. J. Mater. Chem. A. 2020, 8(19), 9496–9522. DOI: 10.1039/D0TA00227E.
  • Azimi, B.; Milazzo, M.; Lazzeri, A.; Berrettini, S.; Uddin, M. J.; Qin, Z.; Buehler, M. J.; Danti, S. Electrospinning Piezoelectric Fibers for Biocompatible Devices. Adv. Healthcare Mater. 2020, 9(1), 1901287. DOI: 10.1002/adhm.201901287.
  • Mokhtari, F.; Spinks, G. M.; Fay, C.; Cheng, Z.; Raad, R.; Xi, J.; Foroughi, J. Wearable Electronic Textiles from Nanostructured Piezoelectric Fibers. Adv. Mater. Technol. 2020, 5(4), 1900900. DOI: 10.1002/admt.
  • Liu, J.; Qiu, J.; Chang, W.; Ji, H.; Zhu, K. Metal Core Piezoelectric Ceramic Fiber Rosettes for Acousto-Ultrasonic Source Localization in Plate Structures. Int. J. Appl. Electromagn. Mech. 2010, 33(3–4), 865–873. DOI: 10.3233/JAE-2010-1196.
  • Luo, J.; Qiu, J.; Zhu, K.; Ji, H.; Liang, D. Origin of the Low Piezoelectric Coefficient of Metal Core 0.3pb(zn1/3nb2/3)o3–0.7pb(zr,ti)o3 Piezoelectric Fibers. J. Alloys Compd. 2013, 581, 468–471. DOI: 10.1016/j.jallcom.2013.06.152.
  • Zhang, C.; Qiu, J.; Ji, H.; Shan, S. An Imaging Method for Impact Localization Using Metal-Core Piezoelectric Fiber Rosettes. J. Intell. Mater. Syst. Struct. 2015, 26(16), 2205–2215. DOI: 10.1177/1045389X14551432.
  • Chen, R.; Liu, W.; Ruan, X.; Fu, X. A Wearable Pressure Sensor Based on the Array of Polymeric Piezoelectric Fiber with Metal Core. Intelligent Robotics and Applications. 2016, 118–124. DOI: 10.1007/978-3-319-43518-3_12.
  • Ishisaka, T.; Sato, H.; Akiyama, Y. Bio-Actuated Power Generator Using Heart Muscle Cells on a PDMS Membrane. In TRANSDUCERS 2007, Proceedings of the 2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France. June 10-14, 2007; Branton, A., Trivedi, D. Durka, J., Eds.; IEEE, 2009. SENSOR. 2007.4300277
  • Bian, Y.; Zhang, Y.; Sun, K.; Jin, H.; Dai, L.; Shen, H. A Biomimetic Vibration Sensor Using a Symmetric Electrodes Metal Core Piezoelectric Fiber. J. Intell. Mater. Syst. Struct. 2018, 29(6), 1015–1024. DOI: 10.1177/1045389X17730908.
  • Bian, Y.; Liu, R.; Huang, X.; Hong, J.; Huang, H.; Hui, S. Design and Fabrication of a Metal Core PVDF Fiber for an Air Flow Sensor. Smart Mater. Struct. 2015, 24(10), 105001. DOI: 10.1088/0964-1726/24/10/105001.
  • McCullagh, J. J.; Galchev, T.; Peterson, R. L.; Gordenker, R.; Zhang, Y.; Lynch, J.; Najafi, K. Long-Term Testing of a Vibration Harvesting System for the Structural Health Monitoring of Bridges. Sens. Actuators, A. 2014, 217, 139–150. DOI: 10.1016/j.sna.2014.07.003.
  • Chen, X.; Xu, S.; Yao, N.; Shi, Y. 1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers. Nano Lett. 2010, 10(6), 2133–2137. DOI: 10.1021/nl100812k.
  • Cho, S.; Chang, T.; Yu, T. Smart Electronic Textiles for Wearable Sensing and Display. Biosensors. 2022, 12(4), 222. DOI: 10.3390/bios12040222.
  • Sun, Q. J.; Zhao, X. H.; Yeung, C. C.; Tian, Q.; Kong, K. -W.; Wu, W.; Venkatesh, S.; Li, W. -J.; Roy, V. A. L. Bioinspired, Self-Powered, and Highly Sensitive Electronic Skin for Sensing Static and Dynamic Pressures. ACS Appl. Mater. Interfaces. 2020, 12(33), 37239–37247. DOI: 10.1021/acsami.0c10788.
  • Zhang, H.; Long, J.; Kong, X. Localized Displacement Phenomenon of a Sliding Soft Fingertip Under Different Grasp Force for Slip Prediction on Prosthetic Hand. Measurement. 2022, 194, 111092. DOI: 10.1016/j.measurement.2022.111092.
  • Li, P.; Zhao, L.; Jiang, Z.; Yu, M.; Li, Z.; Li, X. Self‐powered Flexible Sensor Based on the Graphene Modified P(vdf‐trfe) Electrospun Fibers for Pressure Detection. Macromol. Mater. Eng. 2019, 304(12), 1900504. DOI: 10.1002/mame.201900504.
  • Fu, X.; Dong, J.; Li, L.; Zhang, L.; Zhang, J.; Yu, L.; Lin, Q.; Zhang, J.; Jiang, C.; Zhang, J., et al. Fingerprint-Inspired Dual-Mode Pressure Sensor for Robotic Static and Dynamic Perception. Nano. Energy. 2022, 103, 107788. DOI: 10.1016/j.nanoen.
  • Qiu, Y.; Tian, Y.; Sun, S. Bioinspired, Multifunctional Dual-Mode Pressure Sensors as Electronic Skin for Decoding Complex Loading Processes and Human Motions. Nano. Energy. 2020, 78, 105337. DOI: 10.1016/j.nanoen.2020.105337.
  • Le, M. T.; Huang, S. C. Effect of Nano-Fillers on the Strength Reinforcement of Novel Hybrid Polymer Nanocomposites. Mater. Manuf. Processes. 2016, 31(8), 1066–1072. DOI: 10.1080/10426914.2015.1048365.
  • Vaseashta, A. Carbon Nanotubes Based Devices and Sensors. Mater. Manuf. Processes. 2006, 21(7), 710–716. DOI: 10.1080/10426910600613595.
  • Li, G.; Feng, L.; Tong, P.; Zhai, Z. The Properties of MWCNT/Polyurethane Conductive Composite Coating Prepared by Electrostatic Spraying. Prog. Org. Coat. 2016, 90, 284–290. DOI: 10.1016/j.porgcoat.2015.10.018.
  • D, L. S.; J, K. O.; C, C. B.; Cho, J. W.; Park, J. -S. Effects of Mechanical Strain on the Electric Conductivity of Multiwalled Carbon Nanotube (MWCNT)/Polyurethane (PU) Composites. Fibers Polym. 2009, 10(1), 71–76. DOI: 10.1007/s12221-009-0071-3.
  • Sahoo, N. G.; Jung, Y. C.; Cho, J. W. Electroactive Shape Memory Effect of Polyurethane Composites Filled with Carbon Nanotubes and Conducting Polymer. Mater. Manuf. Processes. 2007, 22(4), 419–423. DOI: 10.1080/10426910701232857.
  • He, D.; Liu, W.; Yuan, R.; FU, X.; STEFANINI, C. Preliminary Study on Piezoresistive and Piezoelectric Properties of a Double-Layer Soft Material for Tactile Sensing. Mater. Sci. 2015, 21(2), 238–243. DOI: 10.5755/j01.ms.21.2.6454.
  • Sato, H. Metal Core Piezoelectric Toughness Fiber. In TRANSDUCERS 2009, Proceedings of the 2009 International Solid-State Sensors, Actuators and Microsystems Conference, Denver, USA, June 21-25, 2009; Branton, A., Trivedi, D. Durka, J., Eds.; IEEE, 2009. DOI: 10.1109/SENSOR.2009.5285566
  • Qiu, J.; Tani, J.; Yanada, N. Fabrication of PNN-PZT Piezoelectric Ceramic Fibers by Extrusion of a Sol-Powder Mixture. J. Intell. Mater. Syst. Struct. 2004, 55–64. DOI:10.1177/1045389X0404394.
  • Bian, Y.; Qiu, J.; Wang, X.; Ji, H.; Zhu, K. The Constitutive Equations of Half Coated Metal Core Piezoelectric Fiber. Int. J. Appl. Electromagn. Mech. 2009, 29(1), 47–64. DOI: 10.3233/JAE-2009-1005.
  • Bian, Y.; Zhang, Y.; Xia, X. Design and Fabrication of a Multi-Electrode Metal-Core Piezoelectric Fiber and Its Application as an Airflow Sensor. J. Bionic. Eng. 2016, 13(3), 416–425. DOI: 10.1016/S1672-6529(16)60314-1.
  • Grujicic, M.; Sellappan, V. O.; Omar, M. A.; Seyr, N.; Obieglo, A.; Erdmann, M.; Holzleitner, J. An Overview of the Polymer-To-Metal Direct-Adhesion Hybrid Technologies for Load-Bearing Automotive Components. J. Mater. Process. Technol. 2008, 197(1–3), 363–373. DOI: 10.1016/j.jmatprotec.2007.06.058.
  • Kechiche, M. B.; Bauer, F.; Harzallah, O.; Drean, J. -Y. Development of Piezoelectric Coaxial Filament Sensors P (VDF-TrFe)/copper for Textile Structure Instrumentation. Sens. Actuators A. 2013, 204, 122–130. DOI: 10.1016/j.sna.2013.10.007.
  • Liu, W.; Chen, R.; Ruan, X.; Fu, X. Polymeric Piezoelectric Fiber with Metal Core Produced by Electrowetting‐aided Dry Spinning Method. J. Appl. Polym. Sci. 2016, 133(39). DOI: 10.1002/app.43968.
  • Satyanarayana, S.; McCormick, D. T.; Majumdar, A. Parylene Micro Membrane Capacitive Sensor Array for Chemical and Biological Sensing. Sens. Actuators B. 2006, 115(1), 494–502. DOI: 10.1016/j.snb.2005.10.013.
  • Golda-Cepa, M.; Engvall, K.; Hakkarainen, M.; Kotarba, A. Recent Progress on Parylene C Polymer for Biomedical Applications: A Review. Prog. Org. Coat. 2020, 140, 105493. DOI: 10.1016/j.porgcoat.2019.105493.
  • Yokokura, S.; Tomimatsu, A.; Ishiguro, J.; Harada, J.; Takahashi, H.; Takahashi, Y.; Nakamura, Y.; Kishida, H.; Suizu, R.; Matsushita, M. M., et al. Stabilization of Interfacial Polarization and Induction of Polarization Hysteresis in Organic MISIM Devices. ACS Appl. Mater. Interfaces. 2021, 13(27), 31928–31933. DOI: 10.1021/acsami.1c08417.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.