434
Views
2
CrossRef citations to date
0
Altmetric
Review

Deciphering the interdependent impact of process parameters in friction stir welding - Part I: an overview of the challenges and way forward

ORCID Icon, , &
Pages 1339-1360 | Received 15 Aug 2022, Accepted 24 Jan 2023, Published online: 15 Feb 2023

References

  • Magalhães, V. M.; Leitão, C.; Rodrigues, D. M. Friction Stir Welding Industrialisation and Research Status. Sci. Technol. Weld. Join. 2018, 23(5), 400–409. DOI: 10.1080/13621718.2017.1403110.
  • Stephen Leon, J.; Bharathiraja, G.; Jayakumar, V. A Review on Friction Stir Welding in Aluminium Alloys. IOP Conf. Ser Mater. Sci. Eng. 2020, 954(1), 1. DOI: 10.1088/1757-899X/954/1/012007.
  • Su, Y.; Li, W.; Gao, F.; Vairis, A. Su2022_effect of FSW Process on Anisotropic of Titanium Alloy T-Joint _ Enhanced Reader.Pdf. Mater. Manuf. Process. 2022, 37(1), 25–33. DOI: 10.1080/10426914.2021.1942911.
  • Fujii, H. Friction Stir Welding; Springer Singapore, 2019. DOI: 10.1007/978-981-13-7611-5.
  • Hashemzadeh, M.; Garbatov, Y.; Guedes Soares, C.; O’connor, A. Friction Stir Welding Induced Residual Stresses in Thick Steel Plates from Experimental and Numerical Analysis. Ships Offshore Struct. 2022, 17(5), 1053–1061. DOI: 10.1080/17445302.2021.1893531.
  • Aldanondo, E.; Arruti, E.; Alvarez, P.; Echeverria, A. Mechanical and Microstructural Properties of FSW Lap Joints. In Friction Stir Welding and Processing VII; Springer International Publishing, 2016; pp. 195–203. DOI: 10.1007/978-3-319-48108-1_20.
  • Batistão, B. F.; Bergmann, L. A.; Gargarella, P.; Guedes de Alcântara, N.; dos Santos, J. F.; Klusemann, B. Characterization of Dissimilar Friction Stir Welded Lap Joints of AA5083 and GL D36 Steel. J. Mater. Res. Technol. 2020, 9(6), 15132–15142. DOI: 10.1016/j.jmrt.2020.10.078.
  • Ghiya, R.; Badheka, V. J. A Review of Friction Stir Lap Welding of Polymer to Metal. Polym. Technol. Mater. 2021, 60(18), 1966–1995. DOI: 10.1080/25740881.2021.1937646.
  • Zhao, Y.; Zhou, L.; Wang, Q.; Yan, K.; Zou, J. Defects and Tensile Properties of 6013 Aluminum Alloy T-Joints by Friction Stir Welding. Mater. Des. 2014, 57, 146–155. DOI: 10.1016/j.matdes.2013.12.021.
  • Eyvazian, A.; Hamouda, A. M.; Aghajani, H.; Elyasi, M. Study on the Effects of Tool Tile Angle, Offset and Plunge Depth on Friction Stir Welding of Poly (Methyl Methacrylate) -Joint. Proc. IMechE Part B J. Eng. Manuf. 2020, 2019(4), 1–15. DOI: 10.1177/0954405419889180.
  • Sun, T.; Shen, Y.; Cao, F.; Yan, Y.; Ni, R.; Jin, J. Forming Mechanisms and Mechanical Property of AZ31B/2024-T4 Friction Stir Welded T-Joints. J. Adhes. Sci. Technol. 2022, 36(9), 972–987. DOI: 10.1080/01694243.2021.1952528.
  • Aghajani Derazkola, H.; Kordani, N.; Aghajani Derazkola, H. Effects of Friction Stir Welding Tool Tilt Angle on Properties of Al-Mg-Si Alloy T-Joint. CIRP J. Manuf. Sci. Technol. 2021, 33, 264–276. DOI: 10.1016/j.cirpj.2021.03.015.
  • Kangazian, J.; Shamanian, M. Microstructure and Mechanical Characterization of Incoloy 825 Ni-Based Alloy Welded to 2507 Super Duplex Stainless Steel Through Dissimilar Friction Stir Welding. Trans. Nonferrous Met. Soc. China (English Ed). 2019, 29(8), 1677–1688. DOI: 10.1016/S1003-6326(19)65074-0.
  • Jose, J. V. Joining of PEEK Plates by Friction Stir Welding Process. Mater. Today Proc. 2020, 39, 1635–1639. DOI: 10.1016/j.matpr.2020.05.768.
  • Kumar, R.; Singh, R.; Ahuja, I. P. S.; Penna, R.; Feo, L. Weldability of Thermoplastic Materials for Friction Stir Welding- a State of Art Review and Future Applications. Compos. B Eng. March 15, 2018, 137, 1–15. DOI: https://doi.org/10.1016/j.compositesb.2017.10.039.
  • Zohoor, M.; Givi, M. K. B.; Salami, P. Effect of Processing Parameters on Fabrication of Al – Mg/Cu Composites via Friction Stir Processing. Mater. Des. 2012, 39, 358–365. DOI: 10.1016/j.matdes.2012.02.042.
  • Vijayavel, P.; Balasubramanian, V.; Sundaram, S. Effect of Shoulder Diameter to Pin Diameter (D/D) Ratio on Tensile Strength and Ductility of Friction Stir Processed LM25AA-5 % SiCp Metal Matrix Composites. Mater. Des. 2014, 57, 1–9. DOI: 10.1016/j.matdes.2013.12.008.
  • Raja, R.; Jannet, S.; Thankachan, T. Investigation of Hybrid Copper Surface Composite Synthesized via FSP. Mater. Manuf. Process. 2021, 36(12), 1377–1383. DOI: 10.1080/10426914.2021.1914841.
  • Vidal, C.; Infante, V.; Vilaça, P. Monitoring of the Mechanical Load and Thermal History During Friction Stir Channelling Under Constant Position and Constant Force Control Modes. J. Manuf. Process. 2020, 49(October 2019), 323–334. DOI: 10.1016/j.jmapro.2019.11.016.
  • Mehta, K. P.; Vilaça, P. A Review on Friction Stir-Based Channeling. Crit. Rev. Solid State Mater. Sci. 2022, 47(1), 1–45. DOI: 10.1080/10408436.2021.1886042.
  • Pandya, S.; Mishra, R.; Arora, A. Channel Formation During Friction Stir Channeling Process—a Material Flow Study Using X-Ray Micro-Computed Tomography and Optical Microscopy. J. Manuf. Process. 2019, 41, 48–55. DOI: 10.1016/j.jmapro.2019.03.021.
  • Pandya, S.; Gurav, S.; Hedau, G.; Saha, S. K.; Arora, A. Effect of Axial Conduction in Integral Rough Friction Stir Channels: Experimental Thermo-Hydraulic Characteristics Analyses. Heat Mass Transf. Und Stoffuebertragung. 2020, 56(6), 1725–1738. DOI: 10.1007/s00231-019-02788-7.
  • Bagheri, B.; Mahdian Rizi, A. A.; Abbasi, M.; Givi, M. Friction Stir Spot Vibration Welding: Improving the Microstructure and Mechanical Properties of Al5083 Joint. Metallogr. Microstruct. Anal. 2019, 8(5), 713–725. DOI: 10.1007/s13632-019-00563-y.
  • Bagheri, B.; Abbasi, M.; Dadaei, M. Mechanical Behavior and Microstructure of AA6061-T6 Joints Made by Friction Stir Vibration Welding. J. Mater. Eng. Perform. 2020, 29(2), 1165–1175. DOI: 10.1007/s11665-020-04639-7.
  • Rahmi, M.; Abbasi, M. Friction Stir Vibration Welding Process: Modified Version of Friction Stir Welding Process. Int. J. Adv. Manuf. Technol. 2017, 90(1–4), 141–151. DOI: 10.1007/s00170-016-9383-9.
  • Mubiayi, M. P.; Akinlabi, E. T. Characterization of the Intermetallic Compounds in Aluminium and Copper Friction Stir Spot Welds. Mater. Today Proc. 2017, 4(2), 533–540. DOI: 10.1016/j.matpr.2017.01.054.
  • Boucherit, A.; Abdi, S.; Aissani, M.; Mehdi, B.; Abib, K.; Badji, R. W. Microstructure, and Residual Stress in Al/Cu and Cu/Al Friction Stir Spot Weld Joints with Zn Interlayer. Int. J. Adv. Manuf. Technol. 2020, 111(5–6), 1553–1569. DOI: 10.1007/s00170-020-06202-z.
  • Shen, Z.; Ding, Y.; Gerlich, A. P. Advances in Friction Stir Spot Welding. Crit. Rev. Solid State Mater. Sci. 2020, 45(6), 457–534. DOI: 10.1080/10408436.2019.1671799.
  • Mishra, R. S.; Ma, Z. Y. Friction Stir Welding and Processing. Mater. Sci. Eng. R Rep. 2005, 50(1–2), 1–78. DOI: 10.1016/j.mser.2005.07.001.
  • Kumar, K.; Kalyan, C.; Kailas, S. V.; Srivatsan, T. S. An Investigation of Friction During Friction Stir Welding of Metallic Materials. Mater. Manuf. Process. 2009, 24(4), 438–445. DOI: 10.1080/10426910802714340.
  • Chen, J.; Fujii, H.; Sun, Y.; Morisada, Y.; Ueji, R. Fine Grained Mg-3al-1zn Alloy with Randomized Texture in the Double-Sided Friction Stir Welded Joints. Mater. Sci. Eng. A. 2013, 580, 83–91. DOI: 10.1016/j.msea.2013.05.044.
  • Kumari, K.; Pal, S. K.; BratSingh, S. Friction Stir Welding by Using Counter-Rotating Twin Tool. J. Mater. Process. Technol. 2015, 215(1), 132–141. DOI: 10.1016/j.jmatprotec.2014.07.031.
  • Li, J. Q.; Liu, H. J. Effects of the Reversely Rotating Assisted Shoulder on Microstructures During the Reverse Dual-Rotation Friction Stir Welding. J. Mater. Sci. Technol. 2015, 31(4), 375–383. DOI: 10.1016/j.jmst.2014.07.020.
  • Fuse, K.; Badheka, V. Bobbin Tool Friction Stir Welding: A Review. Sci. Technol. Weld. Join. 2019, 24(4), 277–304. DOI: 10.1080/13621718.2018.1553655.
  • Rai, R.; De, A.; Bhadeshia, H. K. D. H.; DebRoy, T. Review: Friction Stir Welding Tools. Sci. Technol. Weld. Join. 2011, 16(4), 325–342. DOI: 10.1179/1362171811Y.0000000023.
  • Zhang, Y. N.; Cao, X.; Larose, S.; Wanjara, P. Review of Tools for Friction Stir Welding and Processing. Can. Metall. Q. July 2012, 51, 3, 250–261. Taylor & Francis. DOI: 10.1179/1879139512Y.0000000015.
  • Wang, G. Q.; Zhao, Y. H.; Tang, Y. Y. Research Progress of Bobbin Tool Friction Stir Welding of Aluminum Alloys: A Review. Acta Metall. Sin. (English Lett). 2020, 33(1), 13–29. DOI: 10.1007/s40195-019-00946-8.
  • Eslami, S.; Tavares, P. J.; Moreira, P. M. G. P. Friction Stir Welding Tooling for Polymers: Review and Prospects. Int. J. Adv. Manuf. Technol. March 1 2017, 89, 5–8, 1677–1690. Springer London. DOI: 10.1007/s00170-016-9205-0.
  • Emamian, S.; Awang, M.; Yusof, F.; Hussain, P.; Mehrpouya, M.; Kakooei, S.; Moayedfar, M.; Zafar, A. A Review of Friction Stir Welding Pin Profile. In 2nd International Conference on Mechanical, Manufacturing and Process Plant Engineering; Awang, M., Ed.; Springer: Singapore, 2017; pp 1–18. 10.1007/978-981-10-4232-4_1.
  • Gite, R. A.; Loharkar, P. K.; Shimpi, R. Friction Stir Welding Parameters and Application: A Review. In Materials Today: Proceedings; Elsevier Ltd, 2019; Vol. 19, pp 361–365. 10.1016/j.matpr.2019.07.613.
  • Uday, K. N.; Rajamurugan, G. Influence of Process Parameters and Its Effects on Friction Stir Welding of Dissimilar Aluminium Alloy and Its Composites–A Review. J. Adhes. Sci. Technol. 2022, 2022, 1–34. DOI: 10.1080/01694243.2022.2053348.
  • Singh, V. P.; Patel, S. K.; Kumar, N.; Kuriachen, B. Parametric Effect on Dissimilar Friction Stir Welded Steel-Magnesium Alloys Joints: A Review. Sci. Technol. Weld. Join. 2019, 24(8), 653–684. DOI: 10.1080/13621718.2019.1567031.
  • Albannai, A. I. Review the Common Defects in Friction Stir Welding. Int. J. Sci. Technol. Res. 2020, 9(11), 318–329.
  • Babalola, S. A.; Kumar, N.; Dutta, S.; Murmu, N. C.; Chandra, M. A Critical Review on the Trends Toward Effective Online Monitoring of Defects in Friction Stir Welding of Aluminum Alloys. Lect. Notes Mech. Eng. 2021, 46, 851–868. DOI: 10.1007/978-981-15-9505-9_75.
  • Mishra, D.; Roy, R. B.; Dutta, S.; Pal, S. K.; Chakravarty, D. A Review on Sensor Based Monitoring and Control of Friction Stir Welding Process and a Roadmap to Industry 4.0. J. Manuf. Process. 2018, 36, 373–397. DOI: 10.1016/j.jmapro.2018.10.016.
  • Heidarzadeh, A.; Mironov, S.; Kaibyshev, R.; Çam, G.; Simar, A.; Gerlich, A.; Khodabakhshi, F.; Mostafaei, A.; Field, D. P.; Robson, J. D., et al. Friction Stir Welding/Processing of Metals and Alloys: A Comprehensive Review on Microstructural Evolution. Prog. Mater. Sci. 2020, 117(March 2019), 100752. DOI: 10.1016/j.pmatsci.2020.100752.
  • Jacquin, D.; Guillemot, G. A Review of Microstructural Changes Occurring During FSW in Aluminium Alloys and Their Modelling. J. Mater. Process. Technol. 2021, 288, 116706. DOI: 10.1016/j.jmatprotec.2020.116706.
  • Singh, V. P.; Patel, S. K.; Kuriachen, B. Mechanical and Microstructural Properties Evolutions of Various Alloys Welded Through Cooling Assisted Friction-Stir Welding: A Review. Intermetallics. 2021, 133, 107122. DOI: 10.1016/j.intermet.2021.107122.
  • Salih, O. S.; Ou, H.; Sun, W.; McCartney, D. G. A Review of Friction Stir Welding of Aluminium Matrix Composites. Mater. Des. 2015, 86, 61–71. DOI: 10.1016/j.matdes.2015.07.071.
  • Olabode, M.; Kah, P. Aluminium Alloys Welding Processes: Challenges, Joint Types and Process Selection. Proc. IMechE Part B J. Eng. Manuf. 2013, 227(8), 1129–1137. DOI: 10.1177/0954405413484015.
  • Das, B.; Pal, S.; Bag, S. A Combined Wavelet Packet and Hilbert-Huang Transform for Defect Detection and Modelling of Weld Strength in Friction Stir Welding Process. J. Manuf. Process. 2016, 22, 260–268. DOI: 10.1016/j.jmapro.2016.04.002.
  • Das, B.; Pal, S.; Bag, S. Torque Based Defect Detection and Weld Quality Modelling in Friction Stir Welding Process. J. Manuf. Process. 2017, 27, 8–17. DOI: 10.1016/j.jmapro.2017.03.012.
  • Das, B.; Pal, S.; Bag, S. Weld Quality Prediction in Friction Stir Welding Using Wavelet Analysis. Int. J. Adv. Manuf.Technol. 2017, 89(1–4), 711–725. DOI: 10.1007/s00170-016-9140-0.
  • Rabe, P.; Schiebahn, A.; Reisgen, U. Force Feedback-Based Quality Monitoring of the Friction Stir Welding Process Utilizing an Analytic Algorithm. Weld World. 2021, 65(5), 845–854. DOI: 10.1007/s40194-020-01044-5.
  • Rabe, P.; Schiebahn, A.; Reisgen, U. Deep Learning Approaches for Force Feedback Based Void Defect Detection in Friction Stir Welding. J. Adv. Join. Process. 2022, 5(100087), 1–12. DOI: 10.1016/j.jajp.2021.100087.
  • Singh, K.; Singh, G.; Singh, H. Review on Friction Stir Welding of Magnesium Alloys. J. Magnes. Alloy. 2018, 6(4), 399–416. DOI: 10.1016/j.jma.2018.06.001.
  • Singh, V. P.; Patel, S. K.; Ranjan, A.; Kuriachen, B. Recent Research Progress in Solid State Friction-Stir Welding of Aluminium–Magnesium Alloys: A Critical Review. J. Mater. Res. Technol. 2020, 9(3), 6217–6256. DOI: 10.1016/j.jmrt.2020.01.008.
  • Çam, G.; Serindaǧ, H. T.; Çakan, A.; Mistikoglu, S.; Yavuz, H. The Effect of Weld Parameters on Friction Stir Welding of Brass Plates. Materwiss. Werksttech. 2008, 39(6), 394–399. DOI: 10.1002/mawe.200800314.
  • Mironov, S.; Sato, Y. S.; Kokawa, H. Grain Structure Evolution During Friction-Stir Welding. Phys. Mesomech. 2019, 1(1), 5–14. DOI: 10.24411/1683-805X-2019-11001.
  • Truant, X.; Cailletaud, G.; Fournier Dit Chabert, F.; Guillot, I.; Kruch, S. Cyclic Elastoplastic Behaviour of 2198-T8 Aluminium Alloy Welded Panels. Contin. Mech. Thermodyn. 2021, 33(4), 1691–1707. DOI: 10.1007/s00161-021-01002-6.
  • Chaudhary, B.; Patel, V.; Ramkumar, P. L.; Vora, J. Temperature Distribution During Friction Stir Welding of AA2014 Aluminum Alloy: Experimental and Statistical Analysis. Trans. Indian Inst. Met. 2019, 72(4), 969–981. DOI: 10.1007/s12666-018-01558-z.
  • American Welding Society (AWS), . D17.3/D17.3:2016. Specifications for Friction Stir Welding of Aluminum Alloys for Aerospace Applications 3rd Ed. (Miami (FL):) , 2021.
  • International Standard Organization, . ISO 25239: Friction Stir Weding - Aluminium (Switzerland), 2011.
  • Meshram, S. D.; Reddy, G. M.; Pandey, S. Effect of Tool Material and Process Parameters on Friction Stir Weld Formation of Maraging Steel. Adv. Mater. Process. Technol. 2021, 1–12. DOI:10.1080/2374068X.2021.1945287.
  • Więckowski, W.; BuRek, R.; LAcki, P.; Łogin, W. Analysis of Wear of Tools Made of 1.2344 Steel and MP159 Alloy in the Process of Friction Stir Welding (FSW) of 7075 T6 Aluminium Alloy Sheet Metal. Eksploat. I Niezawodn. - Maint. Reliab. 2019, 21(1), 54–59. DOI: 10.17531/ein.2019.1.7.
  • Mishra, R. S.; Haridas, R. S.; Agrawal, P. Friction Stir-Based Additive Manufacturing. Sci. Technol. Weld. Join. 2022, 27(3), 141–165. DOI: 10.1080/13621718.2022.2027663.
  • Liu, F.; Fu, L.; Chen, H. High Speed Friction Stir Welding of Ultra-Thin AA6061-T6 Sheets Using Different Backing Plates. J. Manuf. Process. 2018, 33(January), 219–227. DOI: 10.1016/j.jmapro.2018.05.020.
  • Chao, Y. J.; Qi, X.; Tang, W. Heat Transfer in Friction Stir Welding - Experimental and Numerical Studies. J. Manuf. Sci. Eng. 2003, 125(1), 138–145. DOI: 10.1115/1.1537741.
  • Padmanaban, G.; Balasubramanian, V. Selection of FSW Tool Pin Profile, Shoulder Diameter and Material for Joining AZ31B Magnesium Alloy – an Experimental Approach. Mater. Des. 2009, 30(7), 2647–2656. DOI: 10.1016/j.matdes.2008.10.021.
  • Zhang, Y. N.; Cao, X.; Larose, S.; Wanjara, P. Review of Tools for Friction Stir Welding and Processing. Can. Metall. Q. 2012, 51(3), 250–261. DOI: 10.1179/1879139512Y.0000000015.
  • Patel, S. K.; Singh, V. P.; Roy, B. S.; Kuriachen, B. Recent Research Progresses in Al-7075 Based in-Situ Surface Composite Fabrication Through Friction Stir Processing: A Review. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2020, 262(August), 114708. DOI: 10.1016/j.mseb.2020.114708.
  • Chao, Y. J.; Qi, X.; Tang, W.; Yuh, J. Heat Transfer in Friction Stir Welding—experimental and Numerical Studies. J. Manuf. Sci. Eng. 2003, 125(1), 138–145. DOI: 10.1115/1.1537741.
  • Sefene, E. M.; Tsegaw, A. A. Temperature-Based Optimization of Friction Stir Welding of AA 6061 Using GRA Synchronous with Taguchi Method. Int. J. Adv. Manuf. Technol. 2022, 119(3–4), 1479–1490. DOI: 10.1007/s00170-021-08260-3.
  • Emamian, S. S.; Awang, M.; Yusof, F.; Sheikholeslam, M.; Mehrpouya, M. Improving the Friction Stir Welding Tool Life for Joining the Metal Matrix Composites. Int. J. Adv. Manuf. Technol. 2020, 106(7–8), 3217–3227. DOI: 10.1007/s00170-019-04837-1.
  • Mahakur, V. K.; Gouda, K.; Patowari, P. K.; Bhowmik, S. A Review on Advancement in Friction Stir Welding Considering the Tool and Material Parameters. Arab. J. Sci. Eng. 2021, 46(8), 7681–7697. DOI: 10.1007/s13369-021-05524-8.
  • Khan, N.; Rathee, S.; Srivastava, M. Friction Stir Welding: An Overview on Effect of Tool Variables. Mater. Today Proc. 2020, 47(July 2022), 7196–7202. DOI: 10.1016/j.matpr.2021.07.487.
  • Garg, A.; Bhattacharya, A. Effect of Tool Size on AA6061-T6 Double-Sided Friction Stir Welds. Mater. Des. Process. Commun. 2021, 3(5), 1–8. DOI: 10.1002/mdp2.259.
  • Shah, L. H.; Walbridge, S.; Gerlich, A. Tool Eccentricity in Friction Stir Welding: A Comprehensive Review. Sci. Technol. Weld. Join. 2019, 24(6), 566–578. DOI: 10.1080/13621718.2019.1573010.
  • Su, H.; Wang, T.; Wu, C. Formation of the Periodic Material Flow Behaviour in Friction Stir Welding. Sci. Technol. Weld. Join. 2021, 26(4), 286–293. DOI: 10.1080/13621718.2021.1902605.
  • Gratecap, F.; Girard, M.; Marya, S.; Racineux, G. Exploring Material Flow in Friction Stir Welding: Tool Eccentricity and Formation of Banded Structures. Int. J. Mater. Form. 2012, 5(2), 99–107. DOI: 10.1007/s12289-010-1008-5.
  • Elangovan, K.; Balasubramanian, V. Influences of Tool Pin Profile and Tool Shoulder Diameter on the Formation of Friction Stir Processing Zone in AA6061 Aluminium Alloy. Mater. Des. 2008, 29(2), 362–373. DOI: 10.1016/j.matdes.2007.01.030.
  • Palanivel, R.; Koshy Mathews, P.; Murugan, N.; Dinaharan, I. Effect of Tool Rotational Speed and Pin Profile on Microstructure and Tensile Strength of Dissimilar Friction Stir Welded AA5083-H111 and AA6351-T6 Aluminum Alloys. Mater. Des. 2012, 40, 7–16. DOI: 10.1016/j.matdes.2012.03.027.
  • Çam, G.; Mistikoglu, S. Recent Developments in Friction Stir Welding of Al-Alloys. J. Mater. Eng. Perform. 2014, 23(6), 1936–1953. DOI: 10.1007/s11665-014-0968-x.
  • Prado, R. A.; Murr, L. E.; Soto, K. F.; McClure, J. C. Self-Optimization in Tool Wear for Friction-Stir Welding of Al 6061+20% Al2o3 MMC. Mater. Sci. Eng. A. 2003, 349(1–2), 156–165. DOI: 10.1016/S0921-5093(02)00750-5.
  • Fernandez, G. J.; Murr, L. E. Characterization of Tool Wear and Weld Optimization in the Friction-Stir Welding of Cast Aluminum 359+20% SiC Metal-Matrix Composite. Mater. Charact. 2004, 52(1), 65–75. DOI: 10.1016/j.matchar.2004.03.004.
  • Shindo, D. J.; Rivera, A. R.; Murr, L. E. Shape Optimization for Tool Wear in the Friction-Stir Welding of Cast Al359-20% SiC MMC. J. Mater. Sci. 2002, 37(23), 4999–5005. DOI: 10.1023/A:1021023329430.
  • Gibson, B. T.; Lammlein, D. H.; Prater, T. J.; Longhurst, W. R.; Cox, C. D.; Ballun, M. C.; Dharmaraj, K. J.; Cook, G. E.; Strauss, A. M. Friction Stir Welding: Process, Automation, and Control. J. Manuf. Process. 2014, 16(1), 56–73. DOI: 10.1016/j.jmapro.2013.04.002.
  • Siddiquee, A. N.; Pandey, S. Experimental Investigation on Deformation and Wear of WC Tool During Friction Stir Welding (FSW) of Stainless Steel. Int. J. Adv. Manuf. Technol. 2014, 73(1–4), 479–486. DOI: 10.1007/s00170-014-5846-z.
  • Hanke, S.; Lemos, G. V. B.; Bergmann, L.; Martinazzi, D.; dos Santos, J. F.; Strohaecker, T. R. Degradation Mechanisms of PcBn Tool Material During Friction Stir Welding of Ni-Base Alloy 625. Wear. 2017, 376–377, 403–408. DOI: 10.1016/j.wear.2017.01.070.
  • Sahlot, P.; Arora, A. Numerical Model for Prediction of Tool Wear and Worn-Out Pin Profile During Friction Stir Welding. Wear. 2018, 408–409, 96–107. DOI: 10.1016/j.wear.2018.05.007.
  • Sahlot, P.; Jha, K.; Dey, G. K.; Arora, A. Wear-Induced Changes in FSW Tool Pin Profile: Effect of Process Parameters. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2018, 49(6), 2139–2150. DOI: 10.1007/s11661-018-4580-9.
  • Cunha, P. H. C. P. D.; Lemos, G. V. B.; Bergmann, L.; Reguly, A.; Santos, J. F. D.; Marinho, R. R.; Paes, M. T. P. Effect of Welding Speed on Friction Stir Welds of GL E36 Shipbuilding Steel. J. Mater. Res. Technol. 2019, 8(1), 1041–1051. DOI: 10.1016/j.jmrt.2018.07.014.
  • Sato, Y. S.; Arkom, P.; Kokawa, H.; Nelson, T. W.; Steel, R. J. Effect of Microstructure on Properties of Friction Stir Welded Inconel Alloy 600. Mater. Sci. Eng. A. 2008, 477(1–2), 250–258. DOI: 10.1016/j.msea.2007.07.002.
  • Vicharapu, B.; Lemos, G. V. B.; Bergmann, L.; Santos, J. F. D.; De, A.; Clarke, T. Probing Underlying Mechanisms for PCBN Tool Decay During Friction Stir Welding of Nickel-Based Alloys. Tecnol. em Metal. Mater. e Mineração. 2021, 18, 1–10. DOI: 10.4322/2176-1523.20202455.
  • Song, K. H.; Nakata, K. Mechanical Properties of Friction-Stir-Welded Inconel 625 Alloy. Mater. Trans. 2009, 50(10), 2498–2501. DOI: 10.2320/matertrans.M2009200.
  • Tiwari, A.; Pankaj, P.; Biswas, P.; Kore, S. D.; Rao, A. G. Tool Performance Evaluation of Friction Stir Welded Shipbuilding Grade DH36 Steel Butt Joints. Int. J. Adv. Manuf. Technol. 2019, 103(5–8), 1989–2005. DOI: 10.1007/s00170-019-03618-0.
  • Tarasov, S. Y.; Rubtsov, V. E.; Kolubaev, E. A. A Proposed Diffusion-Controlled Wear Mechanism of Alloy Steel Friction Stir Welding (FSW) Tools Used on an Aluminum Alloy. Wear. 2014, 318(1–2), 130–134. DOI: 10.1016/j.wear.2014.06.014.
  • Pradeep, A.; Muthukumaran, S. Study of Sub-Shoulder Tool Wear on Friction Stir Welded Steel Plates Using Two Modes of Metal Transfer Phenomenon. Int. J. Adv. Manuf. Technol. 2016, 84(5–8), 1153–1162. DOI: 10.1007/s00170-015-7739-1.
  • Vicharapu, B.; Liu, H.; Morisada, Y.; Fujii, H.; De, A. Degradation of Nickel-Bonded Tungsten Carbide Tools in Friction Stir Welding of High Carbon Steel. Int. J. Adv. Manuf. Technol. 2021, 115(4), 1049–1061. DOI: 10.1007/s00170-021-07159-3.
  • Wang, J.; Su, J.; Mishra, R. S.; Xu, R.; Baumann, J. A. Tool Wear Mechanisms in Friction Stir Welding of Ti–6al–4V Alloy. Wear. 2014, 321, 25–32. DOI: 10.1016/J.WEAR.2014.09.010.
  • Ragu Nathan, S.; Balasubramanian, V.; Malarvizhi, S.; Rao, A. G. An Investigation on Metallurgical Characteristics of Tungsten Based Tool Materials Used in Friction Stir Welding of Naval Grade High Strength Low Alloy Steels. Int. J. Refract. Met. Hard Mater. 2016, 56, 18–26. DOI: 10.1016/j.ijrmhm.2015.12.005.
  • Choi, D. H.; Lee, C. Y.; Ahn, B. W.; Choi, J. H.; Yeon, Y. M.; Song, K.; Park, H. S.; Kim, Y. J.; Yoo, C. D.; Jung, S. B. Frictional Wear Evaluation of WC-Co Alloy Tool in Friction Stir Spot Welding of Low Carbon Steel Plates. Int. J. Refract. Met. Hard Mater. 2009, 27(6), 931–936. DOI: 10.1016/j.ijrmhm.2009.05.002.
  • Hasan, A. F.; Bennett, C. J.; Shipway, P. H. A Numerical Comparison of the Flow Behaviour in Friction Stir Welding (FSW) Using Unworn and Worn Tool Geometries. Mater. Des. 2015, 87, 1037–1046. DOI: 10.1016/j.matdes.2015.08.016.
  • Yang, Z.; Wang, Y.; Domblesky, J. P.; Li, W.; Han, J. Development of a Heat Source Model for Friction Stir Welding Tools Considering Probe Geometry and Tool/Workpiece Interface Conditions. Int. J. Adv. Manuf. Technol. 2021, 114(5–6), 1787–1802. DOI: 10.1007/s00170-021-06985-9.
  • Jain, R. Numerical Modeling and Validation of Friction Stir Welding with Different Tool; Indian Institute of Technology: Kharagpur, 2017.
  • Chen, J.; Ueji, R.; Fujii, H. Double-Sided Friction-Stir Welding of Magnesium Alloy with Concave-Convex Tools for Texture Control. Mater. Des. 2015, 76, 181–189. DOI: 10.1016/j.matdes.2015.03.040.
  • Bag, S.; Yaduwanshi, D.; Pal, S. Heat Transfer and Material Flow in Friction Stir Welding; Woodhead Publishing Limited, 2014. DOI: 10.1533/9780857094551.21.
  • Ma, Z. Y.; Feng, A. H.; Chen, D. L.; Shen, J. Recent Advances in Friction Stir Welding/Processing of Aluminum Alloys: Microstructural Evolution and Mechanical Properties. Crit. Rev. Solid State Mater. Sci. 2018, 43(4), 269–333. DOI: 10.1080/10408436.2017.1358145.
  • Yevtushenko, A. A.; Grzes, P. The FEM-Modeling of the Frictional Heating Phenomenon in the Pad/Disc Tribosystem (A Review). Numer. Heat Transf. Part A Appl. 2010, 58(3), 207–226. DOI: 10.1080/10407782.2010.497312.
  • Quaglini, V.; Bocciarelli, M.; Gandelli, E.; Dubini, P. Numerical Assessment of Frictional Heating in Sliding Bearings for Seismic Isolation. J. Earthq. Eng. 2014, 18(8), 1198–1216. DOI: 10.1080/13632469.2014.924890.
  • Chen, G.; Zhang, S.; Zhu, Y.; Yang, C.; Shi, Q. Thermo-Mechanical Analysis of Friction Stir Welding: A Review on Recent Advances. Acta Metall. Sin. English Lett. 2020, 33(1), 3–12. DOI: 10.1007/s40195-019-00942-y.
  • Li, D.; Yang, X.; Cui, L.; He, F.; Shen, H. Effect of Welding Parameters on Microstructure and Mechanical Properties of AA6061-T6 Butt Welded Joints by Stationary Shoulder Friction Stir Welding. Mater. Des. 2014, 64, 251–260. DOI: 10.1016/j.matdes.2014.07.046.
  • Dialami, N.; Cervera, M.; Chiumenti, M. Defect Formation and Material Flow in Friction Stir Welding. Eur. J. Mech. A/solids. 2020, 80, 1–22. DOI: 10.1016/j.euromechsol.2019.103912.
  • Chauhan, P.; Jain, R.; Pal, S. K.; Singh, S. B. Modeling of Defects in Friction Stir Welding Using Coupled Eulerian and Lagrangian Method. J. Manuf. Process. 2018, 34(June), 158–166. DOI: 10.1016/j.jmapro.2018.05.022.
  • Al-Moussawi, M.; Smith, A. J. Defects in Friction Stir Welding of Steel. Metallogr. Microstruct. Anal. 2018, 7(2), 194–202. DOI: 10.1007/s13632-018-0438-1.
  • Ramulu, P. J.; Narayanan, R. G.; Kailas, S. V.; Reddy, J. Internal Defect and Process Parameter Analysis During Friction Stir Welding of Al 6061 Sheets. Int. J. Adv. Manuf. Technol. 2013, 65(9–12), 1515–1528. DOI: 10.1007/s00170-012-4276-z.
  • Rose, A. R.; Manisekar, K.; Balasubramanian, V. Influences of Welding Speed on Tensile Properties of Friction Stir Welded AZ61A Magnesium Alloy. J. Mater. Eng. Perform. 2012, 21(2), 257–265. DOI: 10.1007/s11665-011-9889-0.
  • Frigaard, O.; Grong, O.; Midling, O. T. A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys. Met. Mater Trans A. 2001, 32(5), 1189–1200. DOI: 10.1007/s11661-001-0128-4.
  • Biswas, P.; Mandal, N. R. Effect of Tool Geometries on Thermal History of FSW of AA1100. Weld. J. 2011, 90((Suppl)), 129–135.
  • Arora, A.; De, A.; Debroy, T. Toward Optimum Friction Stir Welding Tool Shoulder Diameter. Scr. Mater. 2011, 64(1), 9–12. DOI: 10.1016/j.scriptamat.2010.08.052.
  • Nandan, R.; Roy, G. G.; Lienert, T. J.; Debroy, T. Three-Dimensional Heat and Material Flow During Friction Stir Welding of Mild Steel. Acta Mater. 2007, 55(3), 883–895. DOI: 10.1016/j.actamat.2006.09.009.
  • Commin, L.; Dumont, M.; Masse, J. E.; Barrallier, L. Friction Stir Welding of AZ31 Magnesium Alloy Rolled Sheets: Influence of Processing Parameters. Acta Mater. 2009, 57(2), 326–334. DOI: 10.1016/j.actamat.2008.09.011.
  • Motalleb-Nejad, P.; Saeid, T.; Heidarzadeh, A.; Darzi, K.; Ashjari, M. Effect of Tool Pin Profile on Microstructure and Mechanical Properties of Friction Stir Welded AZ31B Magnesium Alloy. Mater. Des. 2014, 59, 221–226. DOI: 10.1016/j.matdes.2014.02.068.
  • Xin, R.; Liu, D.; Shu, X.; Li, B.; Yang, X.; Liu, Q. Influence of Welding Parameter on Texture Distribution and Plastic Deformation Behavior of As-Rolled AZ31 Mg Alloys. J. Alloys Compd. 2016, 670, 64–71. DOI: 10.1016/j.jallcom.2016.02.023.
  • Boldsaikhan, E.; Corwin, E. M.; Logar, A. M.; Arbegast, W. J. The Use of Neural Network and Discrete Fourier Transform for Real-Time Evaluation of Friction Stir Welding. Appl. Soft Comput. J. 2011, 11(8), 4839–4846. DOI: 10.1016/j.asoc.2011.06.017.
  • Sharma, N.; Siddiquee, A. N.; Khan, Z. A.; Mohammed, M. T. Material Stirring During FSW of Al–Cu: Effect of Pin Profile. Mater. Manuf. Process. 2018, 33(7), 786–794. DOI: 10.1080/10426914.2017.1388526.
  • Andrade, D. G.; Leitão, C.; Dialami, N.; Chiumenti, M.; Rodrigues, D. M. Analysis of Contact Conditions and Its Influence on Strain Rate and Temperature in Friction Stir Welding. Int. J. Mech. Sci. 2021, 191(July 2020), 106095. DOI: 10.1016/j.ijmecsci.2020.106095.
  • Bhardwaj, N.; Narayanan, R. G.; Dixit, U. S.; Hashmi, M. S. J. Recent Developments in Friction Stir Welding and Resulting Industrial Practices. Adv. Mater. Process. Technol. 2019, 5(3), 461–496. DOI: 10.1080/2374068X.2019.1631065.
  • Mugada, K. K.; Adepu, K. Influence of Tool Shoulder End Features on Friction Stir Weld Characteristics of Al-Mg-Si Alloy. Int. J. Adv. Manuf. Technol. 2018, 99(5–8), 1553–1566. DOI: 10.1007/s00170-018-2602-9.
  • Mugada, K. K.; Adepu, K. Role of Tool Shoulder End Features on Friction Stir Weld Characteristics of 6082 Aluminum Alloy. J. Inst. Eng. Ser. C. 2019, 100(2), 343–350. DOI: 10.1007/s40032-018-0451-9.
  • Sejani, D.; Li, W.; Patel, V. Stationary Shoulder Friction Stir Welding–Low Heat Input Joining Technique: A Review in Comparison with Conventional FSW and Bobbin Tool FSW. Crit. Rev. Solid State Mater. Sci. 2021, 0(0), 1–50. DOI: 10.1080/10408436.2021.1935724.
  • Li, W. Y.; Fu, T.; Hütsch, L.; Hilgert, J.; Wang, F. F.; dos Santos, J. F.; Huber, N. Effects of Tool Rotational and Welding Speed on Microstructure and Mechanical Properties of Bobbin-Tool Friction-Stir Welded Mg AZ31. Mater. Des. 2014, 64, 714–720. DOI: 10.1016/j.matdes.2014.07.023.
  • Ahmed, M. M. Z.; Habba, M. I. A.; El-Sayed Seleman, M. M.; Hajlaoui, K.; Ataya, S.; Latief, F. H.; El-Nikhaily, A. E. Bobbin Tool Friction Stir Welding of Aluminum Thick Lap Joints: Effect of Process Parameters on Temperature Distribution and Joints’ Properties. Mater. (Basel). 2021, 14(16), 4585. DOI: 10.3390/ma14164585.
  • Sun, Y.; Liu, W.; Li, Y.; Gong, W.; Ju, C. The Influence of Tool Shape on Plastic Metal Flow, Microstructure and Properties of Friction Stir Welded 2024 Aluminum Alloy Joints. Metals (Basel). 2022, 12(3), 408. DOI: 10.3390/met12030408.
  • Chowdhury, S. M.; Chen, D. L.; Bhole, S. D.; Cao, X. Tensile Properties of a Friction Stir Welded Magnesium Alloy: Effect of Pin Tool Thread Orientation and Weld Pitch. Mater. Sci. Eng. A. 2010, 527(21–22), 6064–6075. DOI: 10.1016/j.msea.2010.06.012.
  • Ji, S.; Li, Z.; Zhou, Z.; Wu, B. Effect of Thread and Rotating Speed on Material Flow Behavior and Mechanical Properties of Friction Stir Lap Welding Joints. J. Mater. Eng. Perform. 2017, 26(10), 5085–5096. DOI: 10.1007/s11665-017-2928-8.
  • Dialami, N.; Cervera, M.; Chiumenti, M. Effect of the Tool Tilt Angle on the Heat Generation and the Material Flow in Friction Stir Welding. Metals (Basel). 2019, 9(1), 28. DOI: 10.3390/met9010.
  • Marazani, T.; Akinlabi, E. T.; Madyira, D. M. Reduction of Excessive Flash in Friction Stir Processing of AA1100: An Experimental Observation Study. In Advances in Material Sciences and Engineering. Lecture Notes in Mechanical Engineering. Awang, M., Emamian, S., Yusof, F., ; Singapore: Springer, 2020; pp. 299–308 doi:10.1007/978-981-13-8297-0_32.
  • Acharya, U.; Roy, B. S.; Saha, S. C. On the Role of Tool Tilt Angle on Friction Stir Welding of Aluminum Matrix Composites. Silicon. 2021, 13(1), 79–89. DOI: 10.1007/s12633-020-00405-5.
  • Supriyanka, R.; Kondaiah, V. V.; Raju, L. R.; Dumpala, R.; Ratna Sunil, B. Role of Plunge Depth on the Joint Formation and Mechanical Behavior of Al6063-AZ91 Dissimilar Lap Joint Produced by Friction Stir Welding. Materwiss. Werksttech. 2021, 52(1), 111–121. DOI: 10.1002/mawe.202000099.
  • Kim, Y. G.; Fujii, H.; Tsumura, T.; Komazaki, T.; Nakata, K. Three Defect Types in Friction Stir Welding of Aluminum Die Casting Alloy. Mater. Sci. Eng. A. 2006, 415(1–2), 250–254. DOI: 10.1016/j.msea.2005.09.072.
  • Esmaeili, A.; Besharati Givi, M. K.; Zareie Rajani, H. R. Experimental Investigation of Material Flow and Welding Defects in Friction Stir Welding of Aluminum to Brass. Mater. Manuf. Process. 2012, 27(12), 1402–1408. DOI: 10.1080/10426914.2012.663239.
  • Mehta, K. P.; Badheka, V. J. Effects of Tilt Angle on the Properties of Dissimilar Friction Stir Welding Copper to Aluminum. Mater. Manuf. Process. 2016, 31(3), 255–263. DOI: 10.1080/10426914.2014.994754.
  • Rajendran, C.; Srinivasan, K.; Balasubramanian, V.; Balaji, H.; Selvaraj, P. Effect of Tool Tilt Angle on Strength and Microstructural Characteristics of Friction Stir Welded Lap Joints of AA2014-T6 Aluminum Alloy. Trans. Nonferrous Met. Soc. China (English Ed). 2019, 29(9), 1824–1835. DOI: 10.1016/S1003-6326(19)65090-9.
  • Mehta, M.; Arora, A.; De, A.; Debroy, T. Tool Geometry for Friction Stir Welding - Optimum Shoulder Diameter. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2011, 42(9), 2716–2722. DOI: 10.1007/s11661-011-0672-5.
  • Gharavi, F.; Ebrahimzadeh, I.; Amini, K.; Sadeghi, B.; Dariya, P. Effect of Welding Heat Input on the Microstructure and Mechanical Properties of Dissimilar Friction Stir-Welded Copper/Brass Lap Joint. Mater. Res. 2019, 22(4), 20180599. DOI: 10.1590/1980-5373-MR-2018-0599.
  • Heidarzadeh, A.; Jabbari, M.; Esmaily, M. Prediction of Grain Size and Mechanical Properties in Friction Stir Welded Pure Copper Joints Using a Thermal Model. Int. J. Adv. Manuf. Technol. 2015, 77(9–12), 1819–1829. DOI: 10.1007/s00170-014-6543-7.
  • Zhou, L.; Jiang, Z. H.; Zhao, D. G.; Yu, M. R.; Zhao, H. Y.; Huang, Y. X.; Song, X. G. Effect of Rotation Speed on the Microstructure and Mechanical Properties of Friction-Stir-Welded CuSn6 Tin Bronze. J. Mater. Eng. Perform. 2018, 27(10), 5581–5590. DOI: 10.1007/s11665-018-3589-y.
  • Barenji, R. V. Influence of Heat Input Conditions on Microstructure Evolution and Mechanical Properties of Friction Stir Welded Pure Copper Joints. Trans. Indian Inst. Met. 2016, 69(5), 1077–1085. DOI: 10.1007/s12666-015-0624-7.
  • Rodrigues, D. M.; Leitão, C.; Louro, R.; Gouveia, H.; Loureiro, A. High Speed Friction Stir Welding of Aluminium Alloys. Sci. Technol. Weld. Join. 2010, 15(8), 676–681. DOI: 10.1179/136217110X12785889550181.
  • Wang, Y.; An, J.; Yin, K.; Wang, M.; Yu-Sheng, L.; Huang, C. Ultrafine-Grained Microstructure and Improved Mechanical Behaviors of Friction Stir Welded Cu and Cu – 30zn Joints. Acta Metall. Sin. English Lett. 2018, 31(8), 878–886. DOI: 10.1007/s40195-018-0719-3.
  • El-Aty, A. A.; Xu, Y.; Zhang, S. H.; Ha, S.; Ma, Y.; Chen, D. Impact of High Strain Rate Deformation on the Mechanical Behavior, Fracture Mechanisms and Anisotropic Response of 2060 Al-Cu-Li Alloy. J. Adv. Res. 2019, 18, 19–37. DOI: 10.1016/j.jare.2019.01.012.
  • Feng, X.; Sun, Y.; Lu, Y.; He, J.; Liu, X.; Wan, S. Effect of the Strain Rate on the Damping and Mechanical Properties of a ZK60 Magnesium Alloy. Mater. (Basel). 2020, 13(13), 2969. DOI: https://doi.org/10.3390/ma13132969.
  • Wang, X. F.; Shi, T. Y.; Wang, H. B.; Zhou, S. Z.; Peng, W. F.; Wang, Y. G. Effects of Strain Rate on Mechanical Properties, Microstructure and Texture of Al—mg—si—cu Alloy Under Tensile Loading. Trans. Nonferrous Met. Soc. China. 2020, 30(1), 27–40. DOI: 10.1016/S1003-6326(19)65177-0.
  • Li, C.; Qin, L.; Li, M.; Xiao, H.; Wang, Q.; Chen, J. Influence of Deformation Strain Rate on the Mechanical Response in a Metastable β Titanium Alloy with Various Microstructures. J. Alloys Compd. 2020, 815, 152426. DOI: 10.1016/j.jallcom.2019.152426.
  • Khraisat, W.; Abu Jadayil, W.; Al-Zain, Y.; Musmar, S. The Effect of Rolling Direction on the Weld Structure and Mechanical Properties of DP 1000 Steel. Cogent Eng. 2018, 5(1), 1–11. DOI: 10.1080/23311916.2018.1491019.
  • Lee, W. C.; Liu, Z. R. Effects of Specimen Width and Rolling Direction on the Mechanical Properties of Beryllium Copper AlloyC17200. IOP Conf. Ser Mater. Sci. Eng. 2015, 103, 1. DOI: 10.1088/1757-899X/103/1/012051.
  • Rathmayr, G. B.; Hohenwarter, A.; Pippan, R. Influence of Grain Shape and Orientation on the Mechanical Properties of High Pressure Torsion Deformed Nickel. Mater. Sci. Eng. A. 2013, 560(2–3), 224–231. DOI: 10.1016/j.msea.2012.09.061.
  • Sudhagar, S.; Sakthivel, M.; Mathew, P. J.; Daniel, S. A. A. A Multi Criteria Decision Making Approach for Process Improvement in Friction Stir Welding of Aluminium Alloy. Measurement. 2017, 108, 1–8. DOI: 10.1016/j.measurement.2017.05.023.
  • Sudhagar, S.; Sakthivel, M.; Ganeshkumar, P. Monitoring of Friction Stir Welding Based on Vision System Coupled with Machine Learning Algorithm. Measurement. 2019, 144, 135–143. DOI: 10.1016/j.measurement.2019.05.018.
  • Sinhmar, S.; Dwivedi, D. K. Enhancement of Mechanical Properties and Corrosion Resistance of Friction Stir Welded Joint of AA2014 Using Water Cooling. Mater. Sci. Eng. A. 2017, 684(December 2016), 413–422. DOI: 10.1016/j.msea.2016.12.087.
  • Zhang, Z.; Xiao, B. L.; Ma, Z. Y. Enhancing Mechanical Properties of Friction Stir Welded 2219al-T6 Joints at High Welding Speed Through Water Cooling and Post-Welding Artificial Ageing. Mater. Charact. 2015, 106, 255–265. DOI: 10.1016/j.matchar.2015.06.003.
  • Tao, Y.; Zhang, Z.; Yu, B. H.; Xue, P.; Ni, D. R.; Xiao, B. L.; Ma, Z. Y. Friction Stir Welding of 2060–T8 Al Li Alloy. Part I: Microstructure Evolution Mechanism and Mechanical Properties. Mater. Charact. 2020, 168(July), 110524. DOI: 10.1016/j.matchar.2020.110524.
  • Radisavljevic, I.; Zivkovic, A.; Radovic, N.; Grabulov, V. Influence of FSW Parameters on Formation Quality and Mechanical Properties of Al 2024-T351 Butt Welded Joints. Trans. Nonferrous Met. Soc. China (English Ed). 2013, 23(12), 3525–3539. DOI: 10.1016/S1003-6326(13)62897-6.
  • Bocchi, S.; D’urso, G.; Giardini, C.; Maccarini, G. Effects of Cooling Conditions on Microstructure and Mechanical Properties of Friction Stir Welded Butt Joints of Different Aluminum Alloys. Appl. Sci. 2019, 9(23), 5069. DOI: 10.3390/app9235069.
  • Rajakumar, S.; Balasubramanian, V. Establishing Relationships Between Mechanical Properties of Aluminium Alloys and Optimised Friction Stir Welding Process Parameters. Mater. Des. 2012, 40(September), 17–35. DOI: 10.1016/j.matdes.2012.02.054.
  • Dawood, H. I.; Mohammed, K. S.; Rahmat, A.; Uday, M. B. Effect of Small Tool Pin Profiles on Microstructures and Mechanical Properties of 6061 Aluminum Alloy by Friction Stir Welding. Trans. Nonferrous Met. Soc. China. 2015, 25(9), 2856–2865. DOI: 10.1016/S1003-6326(15)63911-5.
  • Barooni, O.; Abbasi, M.; Givi, M.; Bagheri, B. New Method to Improve the Microstructure and Mechanical Properties of Joint Obtained Using FSW. Int. J. Adv. Manuf. Technol. 2017, 93(9–12), 4371–4378. DOI: 10.1007/s00170-017-0810-3.
  • Ozan, S. Effect of Friction Stir Welding on the Microstructure and Mechanical Properties of AA 6063‐T6 Aluminum Alloy. Materwiss. Werksttech. 2020, 51(8), 1100–1119. DOI: 10.1002/mawe.201900186.
  • Ravi Sankar, B.; Umamaheswarrao, P. Modelling and Optimisation of Friction Stir Welding on AA6061 Alloy. Mater. Today Proc. 2017, 4(8), 7448–7456. DOI: 10.1016/j.matpr.2017.07.076.
  • Krasnowski, K.; Hamilton, C.; Dymek, S. Influence of the Tool Shape and Weld Configuration on Microstructure and Mechanical Properties of the Al 6082 Alloy FSW Joints. Arch. Civ. Mech. Eng. 2015, 15(1), 133–141. DOI: 10.1016/j.acme.2014.02.001.
  • Rajakumar, S.; Muralidharan, C.; Balasubramanian, V. Predicting Tensile Strength, Hardness and Corrosion Rate of Friction Stir Welded AA6061-T6 Aluminium Alloy Joints. Mater. Des. 2011, 32(5), 2878–2890. DOI: 10.1016/j.matdes.2010.12.025.
  • Yuqing, M.; Liming, K.; Fencheng, L.; Yuhua, C.; Li, X. Effect of Tool Pin-Tip Profiles on Material Flow and Mechanical Properties of Friction Stir Welding Thick AA7075-T6 Alloy Joints. Int. J. Adv. Manuf. Technol. 2017, 88(1–4), 949–960. DOI: 10.1007/s00170-016-8882-z.
  • Fratini, L.; Buffa, G.; Shivpuri, R. Mechanical and Metallurgical Effects of in Process Cooling During Friction Stir Welding of AA7075-T6 Butt Joints. Acta Mater. 2010, 58(6), 2056–2067. DOI: 10.1016/j.actamat.2009.11.048.
  • Sharma, C.; Dwivedi, D. K.; Kumar, P. Influence of In-Process Cooling on Tensile Behaviour of Friction Stir Welded Joints of AA7039. Mater. Sci. Eng. A. 2012, 556, 479–487. DOI: 10.1016/j.msea.2012.07.016.
  • Sharma, C.; Dwivedi, D. K.; Kumar, P. Effect of Post Weld Heat Treatments on Microstructure and Mechanical Properties of Friction Stir Welded Joints of Al–Zn–Mg Alloy AA7039. Mater. Des. 2013, 43, 134–143. DOI: 10.1016/j.matdes.2012.06.018.
  • Venkateswarlu, D.; Mandal, N. R.; Mahapatra, M. M.; Harsh, S. P. Tool Design Effects for FSW of AA7039. Weld. J. 2013, 92, 2.
  • Verma, S.; Misra, J. P.; Singh, J.; Batra, U.; Kumar, Y. Prediction of Tensile Behavior of FS Welded AA7039 Using Machine Learning. Mater. Today Commun. 2021, 26, 101933. DOI: 10.1016/j.mtcomm.2020.101933.
  • Verma, S.; Garg, D.; Misra, J. P.; Batra, U. Multi-Objective Optimum Design for FS Welded 7039 Aluminium Alloy Considering Weld Quality Issues. Mater. Today Commun. 2021, 26(December 2020), 102010. DOI: 10.1016/j.mtcomm.2021.102010.
  • Goyal, A.; Rohilla, P. K.; Kaushik, A. K. Optimization of Friction Stir Welding Parameters for AA3003 Aluminum Alloy Joints Using Response Surface Methodology. Nternational J. Mech. Solids. 2017, 9(1), 15–26.
  • Abdulrehman, M. A.; Challoob, S. H.; Marhoon, I. I. Investigation of Mechanical and Numerical Properties of Friction Stir Welding (FSW) for 3003 - H14 Aluminum Alloys. Defect Diffus. Forum. 2020, 398, 106–116. DOI: 10.4028/scientific.net/DDF.398.106.
  • Abnar, B.; Kazeminezhad, M.; Kokabi, A. H. Effects of Heat Input in Friction Stir Welding on Microstructure and Mechanical Properties of AA3003-H18 Plates. Trans. Nonferrous Met. Soc. China English Ed. 2015, 25(7), 2147–2155. DOI: 10.1016/S1003-6326(15)63826-2.
  • Chekalil, I.; Miloudi, A.; Planche, M. -P.; Ghazi, A. Prediction of Mechanical Behavior of Friction Stir Welded Joints of AA3003 Aluminum Alloy. Frat. ed Integrità Strutt. 2020, 14(54), 153–168. DOI: 10.3221/IGF-ESIS.54.11.
  • Tan, Y. B.; Wang, X. M.; Ma, M.; Zhang, J. X.; Liu, W. C.; Fu, R. D.; Xiang, S. A Study on Microstructure and Mechanical Properties of AA 3003 Aluminum Alloy Joints by Underwater Friction Stir Welding. Mater. Charact. 2017, 127, 41–52. DOI: 10.1016/j.matchar.2017.01.039.
  • Vijayan, S.; Raju, R.; Rao, S. R. K. Multiobjective Optimization of Friction Stir Welding Process Parameters on Aluminum Alloy AA 5083 Using Taguchi-Based Grey Relation Analysis. Mater. Manuf. Process. 2010, 25(11), 1206–1212. DOI: 10.1080/10426910903536782.
  • Saravana Kumar, R.; Rajasekaran, T.; Singh, S. D.; Kumar, S.; Mishra, P.; Shrivastav, P.; Ravishankar, S. Optimization of FSW Parameters to Improve the Mechanical and Metallurgical Properties of Aluminium Alloy AA 5083 Joints. IOP Conf. Ser Mater. Sci. Eng. 2020, 912(3), 032029. DOI: 10.1088/1757-899X/912/3/032029.
  • Kundu, J.; Singh, H. Friction Stir Welding of AA5083 Aluminium Alloy: Multi-Response Optimization Using Taguchi-Based Grey Relational Analysis. Adv. Mech. Eng. 2016, 8(11), 168781401667927. DOI: 10.1177/1687814016679277.
  • Kundu, J.; Singh, H. Modelling and Analysis of Process Parameters in Friction Stir Welding of AA5083-H321 Using Response Surface Methodology. Adv. Mater. Process. Technol. 2018, 4(2), 183–199. DOI: 10.1080/2374068X.2017.1411039.
  • Palanivel, R.; Mathews, P. K. Prediction and Optimization of Process Parameter of Friction Stir Welded AA5083- H111 Aluminum Alloy Using Response Surface Methodology. J. Cent. South Univ. 2012, 19(1), 1–8. DOI: 10.1007/s11771−012−0964−y.
  • Sahu, M.; Paul, A.; Ganguly, S. Optimization of Process Parameters of Friction Stir Welded Joints of Marine Grade AA 5083. Mater. Today Proc. 2021, 44, 2957–2962. DOI: 10.1016/j.matpr.2021.01.938.
  • Shojaeefard, M. H.; Akbari, M.; Asadi, P. Multi Objective Optimization of Friction Stir Welding Parameters Using FEM and Neural Network. Int. J. Precis. Eng. Manuf. 2014, 15(11), 2351–2356. DOI: 10.1007/s12541-014-0600-x.
  • Mukhopadhyay, P. A. D. Processing, and Use of AA6XXX Series Aluminium Alloys. ISRN Metall. 2012, 2012, 1–15. DOI: 10.5402/2012/165082.
  • Shah, P. H.; Badheka, V. J. Friction Stir Welding of Aluminium Alloys: An Overview of Experimental Findings – Process, Variables, Development and Applications. Proc. Inst. Mech. Eng. Part L J Mater. Des. Appl. 2019, 233(6), 1191–1226. DOI: 10.1177/1464420716689588.
  • Park, H. S.; Kimura, T.; Murakami, T.; Nagano, Y.; Nakata, K.; Ushio, M. Microstructures and Mechanical Properties of Friction Stir Welds of 60% Cu-40% Zn Copper Alloy. Mater. Sci. Eng. A. 2004, 371(1–2), 160–169. DOI: 10.1016/j.msea.2003.11.030.
  • Heidarzadeh, A.; Barenji, R. V.; Khalili, V.; Güleryüz, G. Optimizing the Friction Stir Welding of the α/β Brass Plates to Obtain the Highest Strength and Elongation. Vacuum. 2019, 159, 152–160. DOI: 10.1016/j.vacuum.2018.10.036.
  • Heidarzadeh, A. T. B. Microstructure, and Substructure of the Friction Stir Welded 70/30 Brass Joints: RSM, EBSD, and TEM Study. Arch. Civ. Mech. Eng. 2019, 19(1), 137–146. DOI: 10.1016/J.ACME.2018.09.009.
  • Xie, G. M.; Ma, Z. Y.; Geng, L. Effects of Friction Stir Welding Parameters on Microstructures and Mechanical Properties of Brass Joints. Mater. Trans. 2008, 49(7), 1698–1701. DOI: 10.2320/matertrans.MRP2008089.
  • Joy, N.; Pragadeeshwar, D.; Shankaran, P. Experimental Evaluation of the Mechanical Properties of Friction Stir Weld of Brass. AIP Conf. Proc. 2020, 2311(December). DOI: 10.1063/5.0034440.
  • Xu, N.; Song, Q. N.; Bao, Y. F. Improvement of Microstructure and Mechanical Properties of C44300 Tin Brass Subjected to Double-Pass Rapid Cooling Friction Stir Welding. J. Alloys Compd. 2020, 834, 155052. DOI: 10.1016/j.jallcom.2020.155052.
  • Xu, N.; Ueji, R.; Fujii, H. Enhanced Mechanical Properties of 70/30 Brass Joint by Multi-Pass Friction Stir Welding with Rapid Cooling. Sci. Technol. Weld. Join. 2015, 20(2), 91–99. DOI: 10.1179/1362171814Y.0000000261.
  • Xu, N.; Chen, L.; Gu, B. K.; Ren, Z. K.; Song, Q. N.; Bao, Y. F. Heterogeneous Structure-Induced Strength and Ductility Synergy of α-Brass Subjected to Rapid Cooling Friction Stir Welding. Trans. Nonferrous Met. Soc. China (English Ed). 2021, 31(12), 3785–3799. DOI: 10.1016/S1003-6326(21)65764-3.
  • Xu, N.; Song, Q.; Bao, Y. Enhanced Strength and Ductility of Friction Stir Welded Cu Joint by Using Large Load with Extremely Low Welding and Rotation Speed. Mater. Lett. 2017, 205, 219–222. DOI: 10.1016/j.matlet.2017.06.043.
  • Moghaddam, M. S.; Parvizi, R.; Haddad-Sabzevar, M.; Davoodi, A. Microstructural and Mechanical Properties of Friction Stir Welded Cu-30zn Brass Alloy at Various Feed Speeds: Influence of Stir Bands. Mater. Des. 2011, 32(5), 2749–2755. DOI: 10.1016/j.matdes.2011.01.015.
  • Selvaraju, S.; Senthamaraikannan, S.; Jayaprakasham, S.; Madiq, A. R. Effect of Process Parameters on Microstructure and Mechanical Properties of Friction Stir Welded Cast Nickel Aluminum Bronze Alloy (C95800). Mater. Res. 2018, 21(3), 3. DOI: 10.1590/1980-5373-MR-2017-0603.
  • Küçükömeroğlu, T.; Şentürk, E.; Kara, L.; İ̇pekoğlu, G.; Çam, G. Microstructural and Mechanical Properties of Friction Stir Welded Nickel-Aluminum Bronze (NAB) Alloy. J. Mater. Eng. Perform. 2016, 25(1), 320–326. DOI: 10.1007/s11665-015-1838-x.
  • Zhou, L.; Xu, F.; Yu, M.; Jiang, Z.; Zhao, D.; He, W.; Huang, Y. Microstructural Characteristics and Mechanical Properties of Friction-Stir-Welded CuSn6 Tin Bronze. J. Mater. Eng. Perform. 2019, 28(7), 4477–4484. DOI: 10.1007/s11665-019-04186-w.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.