1,613
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation of localized electrochemical deposition-based micro-additive manufacturing process

, &
Pages 343-355 | Received 23 Sep 2022, Accepted 07 Mar 2023, Published online: 15 Mar 2023

References

  • Li, X.; Ming, P.; Ao, S.; Wang, W. Review of Additive Electrochemical Micro-Manufacturing Technology. Int. J. Mach. Tools Manuf. 2022, 173, 103848. DOI: 10.1016/J.IJMACHTOOLS.2021.103848.
  • Reddy, R. R.; Okamoto, Y.; Mita, Y. An On-Chip Micromachined Test Structure to Study the Tribological Behavior of Deep-RIE MEMS Sidewall Surfaces. IEEE Trans. Semicond. Manuf. 2020, 33(2), 187–195. DOI: 10.1109/TSM.2020.2982659.
  • Tyagi, M.; Spinks, G. M.; Jager, E. W. H. Fully 3D Printed Soft Microactuators for Soft Microrobotics. Smart Mater. Struct. 2020, 29(8), 085032. DOI: 10.1088/1361-665X/AB9F48.
  • Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L. Review of Selective Laser Melting: Materials and Applications. Appl. Phys. Rev. 2015, 2(4), 041101. DOI: 10.1063/1.4935926.
  • Wu, Y.; Xu, K.; Zhang, Z.; Guo, S.; Dai, X.; Gao, J.; Zhu, H. Study on Application of Laser in Maskless Localized Electrodeposition and Surface Quality Enhancement. Opt. Laser Technol. 2021, 143, 107383. DOI: 10.1016/J.OPTLASTEC.2021.107383.
  • Sundaram, M. M.; Kamaraj, A. B.; Kumar, V. S. Mask-Less Electrochemical Additive Manufacturing: A Feasibility Study. J. Manuf. Sci. Eng. Trans. ASME. 2015, 137(2), 2. DOI: 10.1115/1.4029022.
  • Engwall, A. M.; Rao, Z.; Chason, E. Residual Stress in Electrodeposited Cu Thin Films: Understanding the Combined Effects of Growth Rate and Grain Size. J. Electrochem. Soc. 2017, 164(13), D828–834. DOI: 10.1149/2.0921713jes.
  • Jiang, L. M.; Peng, J.; Liao, Y. G.; Zhou, Y. C.; Liang, J.; Hao, H. X.; Lu, C. A Modified Layer-Removal Method for Residual Stress Measurement in Electrodeposited Nickel Films. Thin Solid Films. 2011, 519(10), 3249–3253. DOI: 10.1016/J.TSF.2011.01.260.
  • Yuqing, X.; Menghua, W.; Weiping, J. Effect of Process Parameters on Growth Pattern of Micro-Nickel Column in Mask-Less Localized Electrodeposition. Procedia CIRP. 2022, 113, 552–557. DOI: 10.1016/J.PROCIR.2022.09.173.
  • Giar, E. M.; Said, R. A.; Bridges, G. E.; Thomson, D. J. Localized Electrochemical Deposition of Copper Microstructures. J. Electrochem. Soc. 2000, 147(2), 586. DOI: 10.1149/1.1393237.
  • Qian, N.; Wu, M.; Zuo, S.; Wu, J. Research on Technology of Additive Manufacturing 3D Metallic Microstructure by Maskless Localized Electrodepositing Method. Procedia CIRP. 2020, 95, 815–820. DOI: 10.1016/J.PROCIR.2020.02.300.
  • Wang, F.; Xiao, H.; He, H. Effects of Applied Potential and the Initial Gap Between Electrodes on Localized Electrochemical Deposition of Micrometer Copper Columns. Sci. Rep. 2016, 6(1), 1–8. DOI: 10.1038/srep26270.
  • Morsali, S.; Daryadel, S.; Zhou, Z.; Behroozfar, A.; Qian, D.; Minary-Jolandan, M. Multi-Physics Simulation of Metal Printing at Micro/Nanoscale Using Meniscus-Confined Electrodeposition: Effect of Environmental Humidity. J. Appl. Phys. 2017, 121(2), 024903. DOI: 10.1063/1.4973622.
  • Juma, J. A. The Effect of Organic Additives in Electrodeposition of Co from Deep Eutectic Solvents. Arab J. Chem. 2021, 14(4), 103036. DOI: 10.1016/J.ARABJC.2021.103036.
  • Aarts, M.; Reiser, A.; Spolenak, R.; Alarcon-Llado, E. Confined Pulsed Diffuse Layer Charging for Nanoscale Electrodeposition with an STM. Nanoscale Adv. 2022, 4(4), 1182–1190. DOI: 10.1039/D1NA00779C.
  • Kamaraj, A. B.; Sundaram, M. A Mathematical Model of the Deposition Rate and Layer Height During Electrochemical Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2019, 102(5–8), 2367–2374. DOI: 10.1007/s00170-019-03292-2.
  • Daryadel, S.; Behroozfar, A.; Morsali, S. R.; Moreno, S.; Baniasadi, M.; Bykova, J.; Bernal, R. A.; Minary-Jolandan, M. Localized Pulsed Electrodeposition Process for Three-Dimensional Printing of Nanotwinned Metallic Nanostructures. Nano Lett. 2018, 18(1), 208–214. DOI: 10.1021/acs.nanolett.7b03930.
  • Said, R. A. Adaptive Tip-Withdrawal Control for Reliable Microfabrication by Localized Electrodeposition. J. Microelectromechanical Syst. 2004, 13(5), 822–832. DOI: 10.1109/JMEMS.2004.835774.
  • García-Lecina, E.; García-Urrutia, I.; Díez, J. A.; Morgiel, J.; Indyka, P. A Comparative Study of the Effect of Mechanical and Ultrasound Agitation on the Properties of Electrodeposited Ni/Al2o3 Nanocomposite Coatings. Surf. Coatings Technol. 2012, 206(11–12), 2998–3005. DOI: 10.1016/J.SURFCOAT.2011.12.037.
  • Volgin, V. M.; Kabanova, T. B.; Davydov, A. D. Modeling of Local Maskless Electrochemical Deposition of Metal Microcolumns. Chem. Eng. Sci. 2018, 183, 123–135. DOI: 10.1016/J.CES.2018.03.019.
  • Wang, F.; Wang, F.; He, H. Parametric Electrochemical Deposition of Controllable Morphology of Copper Micro-Columns. J. Electrochem. Soc. 2016, 163(10), E322–327. DOI: 10.1149/2.1191610jes.
  • Zhang, M.; Lian, X. Rapid Fabrication of High-Aspect-Ratio Platinum Microprobes by Electrochemical Discharge Etching. 2016.9, 4, 233. DOI: 10.3390/ma9040233.
  • Org, W. E.; Sayed, M. A. E.; El-Hendawy, M. M.; Ibrahim, M. A. M. Improving the Characteristics of Nickel Coatings Produced on Copper from Watts Bath in the Presence of Ascorbic Acid – Combined Experimental and Theoretical Study. Int. J. Electrochem. Sci. 2022, 17. DOI: 10.20964/2022.04.12.
  • Habib, M. A.; Gan, S. W.; Rahman, M. Fabrication of Complex Shape Electrodes by Localized Electrochemical Deposition. J. Mater. Process. Technol. 2009, 209(9), 4453–4458. DOI: 10.1016/J.JMATPROTEC.2008.10.041.
  • Jiang, S.; Guo, Z.; Deng, Y.; Dong, H.; Li, X.; Liu, J. Effect of Pulse Frequency on the One-Step Preparation of Superhydrophobic Surface by Pulse Electrodeposition. Appl. Surf. Sci. 2018, 458, 603–611. DOI: 10.1016/J.APSUSC.2018.07.120.
  • Shamim, F. A.; Dvivedi, A.; Kumar, P. On Near-Dry Wire ECDM of Al6063/SiC/10p MMC. Mater. Manuf. Processes. 2020, 36(1), 122–134. DOI: 10.1080/10426914.2020.1802044.
  • Tiwari, T.; Dvivedi, A.; Kumar, P. Investigations on the Fabrication of a Patterned Tool by Chemical Etching. Mater. Manuf. Process. 2021, 36(16), 1840–1852. DOI: 10.1080/10426914.2021.1926491.
  • Kamaraj, A. B.; Shrestha, H.; Speck, E.; Sundaram, M. Experimental Study on the Porosity of Electrochemical Nickel Deposits. Procedia Manuf. 2017, 10, 478–485. DOI: 10.1016/J.PROMFG.2017.07.032.
  • Kamaraj, A. B.; Sundaram, M. A Mathematical Model to Predict the Porosity of Nickel Pillars Manufactured by Localized Electrochemical Deposition under Pulsed Voltage Conditions. Procedia Manuf. 2020, 48, 181–186. DOI: 10.1016/j.promfg.2020.05.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.