151
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Water vapor cutting fluid assisted productive machining of Inconel 718

ORCID Icon & ORCID Icon
Pages 98-109 | Received 17 Nov 2022, Accepted 09 Mar 2023, Published online: 15 Mar 2023

References

  • Pinheiro, C.; Kondo, M. Y.; Amaral, S. S.; Callisaya, E. S.; De Souza, J. V. C.; ; Alves, M. C. D. S.; Ribeiro, M. V. Effect of Machining Parameters on Turning Process of Inconel 718. Mater. Manuf. Processes. 2021, 36, 1421–1437. DOI:10.1080/10426914.2021.1914839.
  • Pawade, R. S.; Joshi, S. S.; Brahmankar, P. K. Effect of Machining Parameters and Cutting Edge Geometry on Surface Integrity of High-Speed Turned Inconel 718. Int. J. Mach. Tools Manuf. 2008, 48(1), 15–28. DOI: 10.1016/j.ijmachtools.2007.08.004.
  • Divya, C.; Raju, L. S.; Singaravel, B. Experimental Investigation on Solid Lubricant Supply Methodology in Turning Process. Mater. Manuf. Processes. 2021, 36(15), 1781–1788. DOI: 10.1080/10426914.2021.1945097.
  • Nikouei, S. M.; Razfar, M. R.; Khajehzadeh, M. Influence of nanoparticles’ Size on Inconel 718 Machining Induced Residual Stresses. Mater. Manuf. Processes. 2022, 37(9), 1003–1012. DOI: 10.1080/10426914.2021.2016821.
  • Pawade, R. S.; Joshi, S. S.; Brahmankar, P. K.; Rahman, M. An Investigation of Cutting Forces and Surface Damage in High-Speed Turning of Inconel 718. J. Mater. Process.Technol. 2007, 192-193, 139–146. DOI: 10.1016/j.jmatprotec.2007.04.049.
  • Arunachalam, R. M.; Mannan, M. A.; Spowage, A. C. Residual Stress and Surface Roughness When Facing Age Hardened Inconel 718 with CBN and Ceramic Cutting Tools. Int. J. Mach. Tools Manuf. 2004, 44(9), 879–887. DOI: 10.1016/j.ijmachtools.2004.02.016.
  • Arunachalam, R. M.; Mannan, M. A.; Spowage, A. C. Surface Integrity When Machining Age Hardened Inconel 718 with Coated Carbide Cutting Tools. Int. J. Mach. Tools Manuf. 2004, 44(14), 1481–1491. DOI: 10.1016/j.ijmachtools.2004.05.005.
  • Cantero, J. L.; Diaz-Alvarez, J.; Miguelez, M. H.; Marin, N. C. Analysis of Tool Wear Patterns in Finishing Turning of Inconel 718. Wear. 2013, 297(1–2), 885–894. DOI: 10.1016/j.wear.2012.11.004.
  • Ojmertz, K. M. C.; Oskarson, H. B. Wear on SiC-Whiskers Reinforced Ceramic Inserts When Cutting Inconel with Waterjet Assistance. Tribol. Trans. 1999, 42(3), 471–478. DOI: 10.1080/10402009908982243.
  • Ezugwu, E. O.; Bonney, J. Effect of High-Pressure Coolant Supply When Machining Nickel-Base, Inconel 718, Alloy with Coated Carbide Tools. J. Mater. Process. Technol. 2004, 153-154, 1045–1050. DOI: 10.1016/j.jmatprotec.2004.04.329.
  • Ezugwu, E. O.; Fadare, D. A.; Bonney, J.; Da Silva, R. B.; Sales, W. F. Modelling the Correlation Between Cutting and Process Parameters in High-Speed Machining of Inconel 718 Alloy Using an Artificial Neural Network. Int. J. Mach. Tools Manuf. 2005, 45(12–13), 1375–1385. DOI: 10.1016/j.ijmachtools.2005.02.004.
  • Devillez, A.; Le Coz, G.; Dominiak, S.; Dudzinski, D. Dry Machining of Inconel 718, Workpiece Surface Integrity. J. Mater. Process. Technol. 2011, 211(10), 1590–1598. DOI: 10.1016/j.jmatprotec.2011.04.011.
  • Peng, R.; Jiang, H.; Tang, X.; Huang, X.; Xu, Y.; Hu, Y. Design and Performance of an Internal-Cooling Turning Tool with Microchannel Structures. J. Manuf. Processes. 2019, 45, 690–701. DOI: 10.1016/j.jmapro.2019.08.011.
  • Kamata, Y.; Obikawa, T. High Speed MQL Finish-Turning of Inconel 718 with Different Coated Tools. J. Mater. Process. Technol. 2007, 192-193, 281–286. DOI: 10.1016/j.jmatprotec.2007.04.052.
  • Thakur, D. G.; Ramamoorthy, B.; Vijayaraghavan, L. Influence of Minimum Quantity Lubrication on the High Speed Turning of Aerospace Material Superalloy Inconel 718. Int. J. Mach. Mach. Mater. 2013, 13(2/3), 203–214. DOI: 10.1504/IJMMM.2013.053223.
  • Kaynak, Y. Evaluation of Machining Performance in Cryogenic Machining of Inconel 718 and Comparison with Dry and MQL Machining. Int. J. Adv. Manuf. Technol. 2014, 72(5–8), 919–933. DOI: 10.1007/s00170-014-5683-0.
  • Deshpande, Y. V.; Andhare, A. B.; Padole, P. M. Experimental Results on the Performance of Cryogenic Treatment of Tool and Minimum Quantity Lubrication for Machinability Improvement in the Turning of Inconel 718. J. Braz. Soc. Mech. Sci. Eng. 2018, 40(1), 40/6. DOI: https://doi.org/10.1007/s40430-017-0920-8.
  • Saleem, M. Q.; Mehmood, A. Eco-Friendly Precision Turning of Superalloy Inconel 718 Using MQL Based Vegetable Oils: Tool Wear and Surface Integrity Evaluation. J. Manuf. Processes. 2022, 73, 112–127. DOI: 10.1016/j.jmapro.2021.10.059.
  • Cakiroglu, R. Machinability Analysis of Inconel 718 Superalloy with AlTin‑coated Carbide Tool Under Different Cutting Environments. Arab. J. Sci. Eng. 2021, 46(8), 8055–8073. DOI: 10.1007/s13369-021-05626-3.
  • Obikawa, T.; Kamata, Y.; Asano, Y.; Nakayama, K.; Otieno, A. W. Micro-Liter Lubrication Machining of Inconel 718. Int. J. Mach. Tools Manuf. 2008, 48(15), 1605–1612. DOI: 10.1016/j.ijmachtools.2008.07.011.
  • Sadhukhan, C.; Mitra, S. K.; Biswas, R.; Naskar, M. K. Tool Condition Monitoring: Unscented Kalman Filter for Tool Flank Wear Estimation in Turning of Inconel 718. Mach. Sci. Technol. 2021, 25(2), 331–348. DOI: 10.1080/10910344.2020.1855650.
  • Wang, Z. Y.; Rajurkar, K. P. Cryogenic Machining of Hard-To-Cut Materials. Wear. 2000, 239(2), 168–175. DOI: 10.1016/S0043-1648(99)00361-0.
  • Zhuang, K.; Zhang, X.; Zhu, D.; Ding, H. Employing Preheating- and Cooling-Assisted Technologies in Machining of Inconel 718 with Ceramic Cutting Tools: Towards Reducing Tool Wear and Improving Surface Integrity. Int. J. Adv. Manuf. Technol. 2015, 80(9), 1815–1822. DOI: 10.1007/s00170-015-7153-8.
  • Khanna, N.; Agrawal, C.; Dogra, M.; Pruncu, C. I. Evaluation of Tool Wear, Energy Consumption, and Surface Roughness During Turning of Inconel 718 Using Sustainable Machining Technique. J. Mater. Res. Technol. 2020, 9(3), 5794–5804. DOI: 10.1016/j.jmrt.2020.03.104.
  • Pereira, W. H.; Delijaicov, S. Surface Integrity of Inconel 718 Turned Under Cryogenic Conditions at High Cutting Speeds. Int. J. Adv. Manuf. Technol. 2019, 104(5–8), 2163–2177. DOI: 10.1007/s00170-019-03946-1.
  • Amigo, F. J.; Urbikain, G.; Pereira, O.; Fernandez-Lucio, P.; Fernandez-Valdivielso, A.; Lopez de Lacalle, L. N. Combination of High Feed Turning with Cryogenic Cooling on Haynes 263 and Inconel 718 Superalloys. J. Manuf. Processes. 2020, 58, 208–222. DOI: 10.1016/j.jmapro.2020.08.029.
  • Tebaldo, V.; Confiengo, G. G.; Faga, M. G. Sustainability in Machining: “Eco-friendly” Turning of Inconel 718 Surface Characterisation and Economic Analysis. J. Cleaner Prod. 2017, 140(3), 1567–1577. DOI: 10.1016/j.jclepro.2016.09.216.
  • Behera, B. C.; Alemayehu, H.; Ghosh, S.; Rao, P. V. A Comparative Study of Recent Lubri-Coolant Strategies for Turning of Ni-Based Superalloy. J. Manuf. Processes. 2017, 30, 541–552. DOI: 10.1016/j.jmapro.2017.10.027.
  • Chaabani, S.; Arrazola, P. J.; Ayed, Y.; Madariaga, A.; Tidu, A.; Germain, G. Comparison Between Cryogenic Coolants Effect on Tool Wear and Surface Integrity in Finishing Turning of Inconel 718. J. Mater. Process. Technol. 2020, 285, 116780. DOI: 10.1016/j.jmatprotec.2020.116780.
  • Sivalingam, V.; Zhao, Y.; Thulasiram, R.; Sun, J.; Kai, G.; Nagamalai, T. Machining Behaviour, Surface Integrity and Tool Wear Analysis in Environment Friendly Turning of Inconel 718 Alloy. Measurement. 2021, 174, 109028. DOI: 10.1016/j.measurement.2021.109028.
  • Sivalingam, V.; Poogavanam, G.; Natarajan, Y.; Sun, J. Optimization of Atomized Spray Cutting Fluid Eco-Friendly Turning of Inconel 718 Alloy Using ARAS and CODAS Methods. Int. J. Adv. Manuf. Technol. 2022, 120(7–8), 4551–4564. DOI: 10.1007/s00170-022-09047-w.
  • Sivalingam, V.; Zhuoliang, Z.; Jie, S.; Baskaran, S.; Yuvaraj, N.; Gupta, M. K.; Aqib, M. K. Use of Atomized Spray Cutting Fluid Technique for the Turning of a Nickel Base Superalloy. Mater. Manuf. Processes. 2021, 36(3), 373–380. DOI: 10.1080/10426914.2020.1832687.
  • Pusavec, F.; Hamdi, H.; Kopac, J.; Jawahir, I. S. Surface Integrity in Cryogenic Machining of Nickel Based Alloy—inconel 718. J. Mater. Process.Technol. 2011, 211(4), 773–783. DOI: 10.1016/j.jmatprotec.2010.12.013.
  • Pusavec, F.; Deshpande, A.; Yang, S.; M’saoubi, R.; Kopac, J.; Dillon, O. W.; Jawahir, I. S. Sustainable Machining of High Temperature Nickel Alloy – Inconel 718: Part 1 – Predictive Performance Models. J. Cleaner Prod. 2014, 81, 255–269. DOI: 10.1016/j.jclepro.2014.06.040.
  • Danish, M.; Gupta, M. K.; Rubaiee, S.; Ahmed, A.; Korkmaz, M. E. Influence of Hybrid Cryo-MQL Lubri-Cooling Strategy on the Machining and Tribological Characteristics of Inconel 718. Tribol. Int. 2021, 163, 107178. DOI: 10.1016/j.triboint.2021.107178.
  • Iturbe, A.; Hormaetxe, E.; Garay, A.; Arrazola, P. J. Surface Integrity Analysis When Machining Inconel 718 with Conventional and Cryogenic Cooling. Procedia CIRP. 2016, 45, 67–70. DOI: 10.1016/j.procir.2016.02.095.
  • Bagherzadeh, A.; Budak, E. Investigation of Machinability in Turning of Difficult-To-Cut Materials Using a New Cryogenic Cooling Approach. Tribol. Int. 2018, 119, 510–520. DOI: 10.1016/j.triboint.2017.11.033.
  • Su, Y.; He, N.; Li, L.; Iqbal, A.; Xiao, M. H.; Xu, S.; Qiu, B. G. Refrigerated Cooling Air Cutting of Difficult-To-Cut Materials. Int. J. Mach. Tools Manuf. 2007, 47(6), 927–933. DOI: 10.1016/j.ijmachtools.2006.07.005.
  • Marques, A.; Suarez, M. P.; Sales, W. F.; Machado, A. R. Turning of Inconel 718 with Whisker-Reinforced Ceramic Tools Applying Vegetable-Based Cutting Fluid Mixed with Solid Lubricants by MQL. J. Mater. Process. Technol. 2019, 266, 530–543. DOI: 10.1016/j.jmatprotec.2018.11.032.
  • Darshan, C.; Jain, S.; Dogra, M.; Gupta, M. K.; Mia, M.; Haque, R. Influence of Dry and Solid Lubricant-Assisted MQL Cooling Conditions on the Machinability of Inconel 718 Alloy with Textured Tool. Int. J. Adv. Manuf. Technol. 2019, 105(5–6), 1835–1849. DOI: 10.1007/s00170-019-04221-z.
  • Gong, L.; Bertolini, R.; Ghiotti, A.; He, N.; Bruschi, S. Sustainable Turning of Inconel 718 Nickel Alloy Using MQL Strategy Based on Graphene Nanofluids. Int. J. Adv. Manuf. Technol. 2020, 108(9–10), 3159–3174. DOI: 10.1007/s00170-020-05626-x.
  • Gong, L.; Bertolini, R.; Bruschi, S.; Ghiotti, A.; He, N. Surface Integrity Evaluation When Turning Inconel 718 Alloy Using Sustainable Lubricating‑cooling Approaches. Int. J. Precis. Eng. Manuf. Green Technol. 2022, 9(1), 25–42. DOI: 10.1007/s40684-021-00310-1.
  • Makhesana, M. A.; Patel, K. M. Optimization of Parameters and Sustainability Assessment Under Minimum Quantity Solid Lubrication-Assisted Machining of Inconel 718. Process Integr. Optim. Sustainability. 2021, 5(3), 625–644. DOI: 10.1007/s41660-021-00171-w.
  • Makhesana, M. A.; Patel, K. M. Performance Assessment of Vegetable Oil-Based Nanofluid in Minimum Quantity Lubrication (MQL) During Machining of Inconel 718. Adv. Mater. Process. Technol. 2021, 8(3), 3182–3198. DOI: 10.1080/2374068X.2021.1945305.
  • Sarkar, S.; Datta, S. Machining Performance of Inconel 718 Under Dry, MQL, and Nanofluid MQL Conditions: Application of Coconut Oil (Base Fluid) and Multi-Walled Carbon Nanotubes as Additives. Arab. J. Sci. Eng. 2021, 46(3), 2371–2395. DOI: 10.1007/s13369-020-05058-5.
  • Han, R.; Liu, J.; Sun, Y. Research on Experimentation of Green Cutting with Water Vapour as Coolant and Lubricant. Ind. Lubrication Tribol. 2005, 57(5), 187–192. DOI: 10.1108/00368790510614154.
  • Junyan, L.; Rongdi, H.; Li, Z. Study on the Effect of Jet Flow Parameters with Water Vapour as Coolants and Lubricants in Green Cutting. Ind. Lubrication Tribol. 2007, 59(6), 278–284. DOI: 10.1108/00368790710820874.
  • Junyan, L.; Rongdi, H.; Yang, W. Research on Difficult-Cut-Material in Cutting with Application of Water Vapour as Coolant and Lubricant. Ind. Lubrication Tribol. 2010, 62(5), 251–262. DOI: 10.1108/00368791011064400.
  • Wu, J.; Han, R. D. Research on Experiments with Water Vapour as Coolant and Lubricant in Drilling Ti6al4v. Ind. Lubrication Tribol. 2013, 65(1), 50–60. DOI: 10.1108/00368791311292819.
  • Pawade, R. S.; Reddy, D. S. N.; Kadam, G. S. Chip Segmentation Behaviour and Surface Topography in High-Speed Turning of Titanium Alloy (Ti-6al-4V) with Eco-Friendly Water Vapour. Int. J. Mach Mach. Mater. 2013, 13-2(3), 113–137. DOI: 10.1504/IJMMM.2013.053218.
  • Kadam, G. S.; Pawade, R. S. Surface Integrity and Sustainability Assessment in High-Speed Machining of Inconel 718 – an Eco-Friendly Green Approach. J. Cleaner Prod. 2017, 147, 273–283. DOI: 10.1016/j.jclepro.2017.01.104.
  • Tschatsch, H. Applied Machining Technology; Springer: USA, 2008.
  • Iscar. Turning & Threading Tools Metric Version Catalog 2018; Iscar: Israel, 2018.
  • Schulz, H.; Moriwaki, T. High-Speed Machining. CIRP Annals. 1992, 41(2), 637–643. DOI: 10.1016/S0007-8506(07)63250-8.
  • Kadam, G. S. Investigations on Surface Integrity in High-Speed Machining of Inconel 718 under different Machining Environments. Thesis Report; DBATU: Lonere, India, 2019.
  • Davim, J. P. Machining - Fundamentals and Recent Advances; Springer: London, 2008.
  • Childs, T.; Maekawa, K.; Obikawa, T.; Yamane, Y. Metal Machining: Theory and Applications; Arnold-Hodder Headline Group: London, 2000.
  • Boothroyd, G.; Knight, W. A. Fundamentals of Machining and Machine Tools; CRC Press: New York, 2006.
  • Shaw, M. C. Metal Cutting Principles; Oxford University Press: United Kingdom, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.