262
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental research on material removal in robot abrasive belt grinding

, , &
Pages 123-129 | Received 29 Nov 2022, Accepted 24 Feb 2023, Published online: 13 Mar 2023

References

  • Ma, K. W.; Han, L.; Sun, X. X.; Liang, C.; Zhang, S. S.; Shi, Y. D.; Wang, X. S. A Path Planning Method of Robotic Belt Grinding for Workpieces with Complex Surfaces. IEEE-ASME Trans. Mechatron. 2020, 25(2), 728–738. DOI: 10.1109/TMECH.2020.2974925.
  • Zhang, G. J.; Ni, F. L.; Liu, H.; Jiang, Z. N.; Yang, G. C.; Li, C. Y. Learning Impedance Regulation Skills for Robot Belt Grinding from Human Demonstrations. Assem. Autom. 2021, 41(4), 431–440. DOI: 10.1108/AA-08-2020-0110.
  • Yang, Z. Y.; Xu, X. H.; Zhu, D. H.; Yan, S. J.; Ding, H. On Energetic Evaluation of Robotic Belt Grinding Mechanisms Based on Single Spherical Abrasive Grain Model. Int. J. Adv. Manuf. Tech. 2019, 104(9–12), 4539–4548. DOI: 10.1007/s00170-019-04222-y.
  • Malkin, S.; Guo, C. Grinding Technology: Theory and Applications of Machining with Abrasives, 2nd ed.; New York: Industrial Press, 2008.
  • Rowe, W. B. Principles of Modern Grinding Technology, 2nd ed.; New York: William Andrew Inc, 2013.
  • Pradhan, S.; Das, S. R.; Jena, P. C.; Dhupal, D. Machining Performance Evaluation Under Recently Developed Sustainable HAJM Process of Zirconia Ceramic Using Hot Sic Abrasives: An Experimental and Simulation Approach. Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci. 2021, 236(2), 1009–1035. DOI: 10.1177/09544062211010199.
  • Öpöz, T. T.; Chen, X. Experimental Investigation of Material Removal Mechanism in Single Grit Grinding. Int. J. Mach. Tools Manuf. 2012, 63, 32–40. DOI: 10.1016/j.ijmachtools.2012.07.010.
  • Chen, X.; Öpöz, T. T.; Oluwajobi, A. Analysis of Grinding Surface Creation by Single-Grit Approach. J. Manuf. Sci. Eng.-Trans. ASME. 2017, 139(12). DOI: 10.1115/1.4037992.
  • Endo, H.; Marui, E. Deformation Simulation of Ground Materials by Coated Abrasives (Wear Test). Ind. Lubr. Tribol. 2007, 59(4), 172–177. DOI: 10.1108/00368790710753563.
  • Zhang, T.; Jiang, F.; Yan, L.; Xu, X. P. Research on the Size Effect of Specific Cutting Energy Based on Numerical Simulation of Single Grit Scratching. J. Manuf. Sci. Eng.-Trans. ASME. 2018, 140(7). DOI: 10.1115/1.4039916.
  • Khoran, M.; Azarhoushang, B.; Daneshi, A. Experimental Study of Single Grit Scratch Test on Carbon Fiber-Reinforced Polyether Ether Ketone. Prod. Eng. 2021, 15(5), 751–759. DOI: 10.1007/s11740-021-01056-0.
  • Chaudhari, A.; Sharma, A.; Awale, A. S.; Yusufzai, M. Z. K.; Vashista, M. Modeling and Simulation Study of Dry Ultrasonic Vibration-Assisted Grinding of Tool Steel with Single Alumina Abrasive Grit. J. Manuf. Sci. Eng.-Trans. ASME. 2022, 144(11). DOI: 10.1115/1.4054602.
  • Subhash, G.; Klecka, M. Ductile to Brittle Transition Depth During Single-Grit Scratching on Alumina Ceramics. J. Am. Ceram. Soc. 2007, 90(11), 3704–3707. DOI: 10.1111/j.1551-2916.2007.01970.x.
  • Masoumi, H.; Safavi, S. M.; Salehi, M. Grinding ForceSpecific Energy and Material Removal Mechanism in Grinding of HVOF-Sprayed WC–Co–Cr Coating. Mater. Manuf. Process. 2014, 29(3), 321–330. DOI: 10.1080/10426914.2013.872261.
  • Suya Prem Anand, P.; Arunachalam, N.; Vijayaraghavan, L. Study on Grinding of Pre-Sintered Zirconia Using Diamond Wheel. Mater. Manuf. Process. 2018, 33(6), 634–643. DOI: 10.1080/10426914.2017.1364761.
  • Pradhan, S.; Dhupal, D.; Das, S. R.; Jena, P. C. Experimental Investigation and Optimization on Machined Surface of Si3N4 Ceramic Using Hot Sic Abrasive in HAJM. Mater. Today Proc. 2021, 44, 1877–1887. DOI: 10.1016/j.matpr.2020.12.066.
  • Pradhan, S.; Das, S. R.; Nanda, B. K.; Jena, P. C.; Dhupal, D. Experimental Investigation on Machining of Hardstone Quartz with Modified AJM Using Hot Silicon Carbide Abrasives. J. Braz. Soc. Mech. Sci. Eng. 2020, 42(11), 559. DOI: 10.1007/s40430-020-02644-4.
  • Pradhan, S.; Das, S. R.; Nanda, B. K.; Jena, P. C.; Dhupal, D. Machining of Hardstone Quartz with Modified AJM Process Using Hot Sic Abrasives: Analysis, Modeling, Optimization, and Cost Analysis. Surf. Rev. Lett. 2021, 28(2), 2050049. DOI: 10.1142/S0218625X20500493.
  • Zou, L.; Li, H.; Yang, Y. G.; Huang, Y. Feasibility Study of Minimum Quantity Lubrication Assisted Belt Grinding of Titanium Alloys. Mater. Manuf. Process. 2020, 35(9), 961–968. DOI: 10.1080/10426914.2020.1747625.
  • Liu, W.; Deng, Z. H.; Shang, Y. Y.; Wan, L. L. Parametric Evaluation and Three-Dimensional Modelling for Surface Topography of Grinding Wheel. Int. J. Mech. Sci. 2019, 155, 334–342. DOI: 10.1016/j.ijmecsci.2019.03.006.
  • Johnson, K. L. Contact Mechanics; Cambridge: Cambridge University Press, 1985.
  • Puttock, M. J.; Thwaite, E. G. Elastic Compression of Spheres and Cylinders at Point and Line Contact; Canberra: Commonwealth Scientific and Industrial Research Organization, 1969.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.